495 publications
-
Asymmetric Hydrogenation with Antibody-Achiral Rhodium Complex
-
Org. Biomol. Chem. 2006, 4, 3571, 10.1039/B609242J
Monoclonal antibodies have been elicited against an achiral rhodium complex and this complex was used in the presence of a resultant antibody, 1G8, for the catalytic hydrogenation of 2-acetamidoacrylic acid to produce N-acetyl-L-alanine in high (>98%) enantiomeric excess.
Notes: ---
-
Asymmetric δ-Lactam Synthesis with a Monomeric Streptavidin Artificial Metalloenzyme
-
J. Am. Chem. Soc. 2019, 141, 4815-4819, 10.1021/jacs.9b01596
Reliable design of artificial metalloenzymes (ArMs) to access transformations not observed in nature remains a long-standing and important challenge. We report that a monomeric streptavidin (mSav) Rh(III) ArM permits asymmetric synthesis of α,β-unsaturated-δ-lactams via a tandem C–H activation and [4+2] annulation reaction. These products are readily derivatized to enantioenriched piperidines, the most common N-heterocycle found in FDA approved pharmaceuticals. Desired δ-lactams are achieved in yields as high as 99% and enantiomeric excess of 97% under aqueous conditions at room temperature. Embedding a Rh cyclopentadienyl (Cp*) catalyst in the active site of mSav results in improved stereocontrol and a 7-fold enhancement in reactivity relative to the isolated biotinylated Rh(III) cofactor. In addition, mSav-Rh outperforms its well-established tetrameric forms, displaying 11–33 times more reactivity.
Metal: RhHost protein: Streptavidin (monmeric)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Atroposelective Antibodies as a Designed Protein Scaffold for Artificial Metalloenzymes
-
Sci. Rep. 2019, 9, 10.1038/s41598-019-49844-0
Design and engineering of protein scaffolds are crucial to create artificial metalloenzymes. Herein we report the first example of C-C bond formation catalyzed by artificial metalloenzymes, which consist of monoclonal antibodies (mAbs) and C2 symmetric metal catalysts. Prepared as a tailored protein scaffold for a binaphthyl derivative (BN), mAbs bind metal catalysts bearing a 1,1?-bi-isoquinoline (BIQ) ligand to yield artificial metalloenzymes. These artificial metalloenzymes catalyze the Friedel-Crafts alkylation reaction. In the presence of mAb R44E1, the reaction proceeds with 88% ee. The reaction catalyzed by Cu-catalyst incorporated into the binding site of mAb R44E1 is found to show excellent enantioselectivity with 99% ee. The protein environment also enables the use of BIQ-based catalysts as asymmetric catalysts for the first time.
Notes: ---
-
Autoxidation of Ascorbic Acid Catalyzed by a Semisynthetic Enzyme
-
Biopolymers 1990, 29, 39-43, 10.1002/bip.360290107
The semisyntehtic enzyme 6 was prepared by alkylation of the cysteine‐25 sulfhydryl group of papain with the bipyridine 5 and was shown to stoichiometrically bind copper ion; 7 catalyzed the autoxidation of ascorbic acid derivatives with saturation kinetics approximately 20‐fold faster than a model system using 3‐Cu(II).
Metal: CuLigand type: BipyridineHost protein: Papain (PAP)Anchoring strategy: CovalentOptimization: ---Notes: ---
-
A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase
-
J. Am. Chem. Soc. 2017, 139, 5149-5155, 10.1021/jacs.7b00675
Thermally stable TM1459 cupin superfamily protein from Thermotoga maritima was repurposed as an osmium (Os) peroxygenase by metal-substitution strategy employing the metal-binding promiscuity. This novel artificial metalloenzyme bears a datively bound Os ion supported by the 4-histidine motif. The well-defined Os center is responsible for not only the catalytic activity but also the thermodynamic stability of the protein folding, leading to the robust biocatalyst (Tm ≈ 120 °C). The spectroscopic analysis and atomic resolution X-ray crystal structures of Os-bound TM1459 revealed two types of donor sets to Os center with octahedral coordination geometry. One includes trans-dioxide, OH, and mer-three histidine imidazoles (O3N3 donor set), whereas another one has four histidine imidazoles plus OH and water molecule in a cis position (O2N4 donor set). The Os-bound TM1459 having the latter donor set (O2N4 donor set) was evaluated as a peroxygenase, which was able to catalyze cis-dihydroxylation of several alkenes efficiently. With the low catalyst loading (0.01% mol), up to 9100 turnover number was achieved for the dihydroxylation of 2-methoxy-6-vinyl-naphthalene (50 mM) using an equivalent of H2O2 as oxidant at 70 °C for 12 h. When octene isomers were dihydroxylated in a preparative scale for 5 h (2% mol cat.), the terminal alkene octene isomers was converted to the corresponding diols in a higher yield as compared with the internal alkenes. The result indicates that the protein scaffold can control the regioselectivity by the steric hindrance. This protein scaffold enhances the efficiency of the reaction by suppressing disproportionation of H2O2 on Os reaction center. Moreover, upon a simple site-directed mutagenesis, the catalytic activity was enhanced by about 3-fold, indicating that Os-TM1459 is evolvable nascent osmium peroxygenase.
Metal: OsLigand type: Amino acidHost protein: TM1459 cupinAnchoring strategy: Metal substitutionOptimization: GeneticNotes: Exclusively cis dihydroxylation product obtained
Metal: OsLigand type: Amino acidHost protein: TM1459 cupinAnchoring strategy: Metal substitutionOptimization: GeneticNotes: Exclusively cis dihydroxylation product obtained
-
A Whole Cell E. coli Display Platform for Artificial Metalloenzymes: Poly(phenylacetylene) Production with a Rhodium–Nitrobindin Metalloprotein
-
ACS Catal. 2018, 8, 2611-2614, 10.1021/acscatal.7b04369
Whole cell catalysis is, in many cases, a prerequisite for the cost-effective production of chemicals by biotechnological means. Synthetic metal catalysts for bioorthogonal reactions can be inactivated within cells due to abundant thiol derivatives. Here, a cell surface display-based whole cell biohybrid catalyst system (termed ArMt bugs) is reported as a generally applicable platform to unify cost-effective whole cell catalysis with biohybrid catalysis. An inactivated esterase autotransporter is employed to display the nitrobindin protein scaffold with a Rh catalyst on the E. coli surface. Stereoselective polymerization of phenylacetylene yielded a high turnover number (TON) (39 × 106 cell–1) for the ArMt bugs conversion platform.
Metal: RhHost protein: Nitrobindin variant NB4Anchoring strategy: Cystein-maleimideOptimization: ---Notes: Calculated in vivo TON assuming 12800 metalloenzymes per E. coli cell
-
Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes
-
ACS Cent. Sci. 2017, 3, 302-308, 10.1021/acscentsci.6b00391
Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C–H bond. We postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiple modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, >70:1 dr, >75% yield, and ∼10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Together, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: Selectivity for cis product (cis/trans = 90:1)
-
Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis
Review -
Acc. Chem. Res. 2019, 52, 576-584, 10.1021/acs.accounts.8b00625
Transition metal catalysis is a powerful tool for chemical synthesis, a standard by which understanding of elementary chemical processes can be measured, and a source of awe for those who simply appreciate the difficulty of cleaving and forming chemical bonds. Each of these statements is amplified in cases where the transition metal catalyst controls the selectivity of a chemical reaction. Enantioselective catalysis is a challenging but well-established phenomenon, and regio- or site-selective catalysis is increasingly common. On the other hand, transition-metal-catalyzed reactions are typically conducted under highly optimized conditions. Rigorous exclusion of air and water is common, and it is taken for granted that only a single substrate (of a particular class) will be present in a reaction, a desired site selectivity can be achieved by installing a directing group, and undesired reactivity can be blocked with protecting groups. These are all reasonable synthetic strategies, but they also highlight limits to catalyst control. The utility of transition metal catalysis could be greatly expanded if catalysts possessed the ability to regulate which molecules they encounter and the relative orientation of those molecules. The rapid and widespread adoption of stoichiometric bioorthogonal reactions illustrates the utility of robust reactions that proceed with high selectivity and specificity under mild reaction conditions. Expanding this capability beyond preprogrammed substrate pairs via catalyst control could therefore have an enormous impact on molecular science. Many metalloenzymes exhibit this level of catalyst control, and directed evolution can be used to rapidly improve the catalytic properties of these systems. On the other hand, the range of reactions catalyzed by enzymes is limited relative to that developed by chemists. The possibility of imparting enzyme-like activity, selectivity, and evolvability to reactions catalyzed by synthetic transition metal complexes has inspired the creation of artificial metalloenzymes (ArMs). The increasing levels of catalyst control exhibited by ArMs developed to date suggest that these systems could constitute a powerful platform for bioorthogonal transition metal catalysis and for selective catalysis in general. This Account outlines the development of a new class of ArMs based on a prolyl oligopeptidase (POP) scaffold. Studies conducted on POP ArMs containing a covalently linked dirhodium cofactor have shown that POP can impart enantioselectivity to a range of dirhodium-catalyzed reactions, increase reaction rates, and improve the specificity for reaction of dirhodium carbene intermediates with targeted organic substrates over components of cell lysate, including bulk water. Several design features of these ArMs enabled their evolution via random mutagenesis, which revealed that mutations throughout the POP scaffold, beyond the second sphere of the dirhodium cofactor, were important for ArM activity and selectivity. While it was anticipated that the POP scaffold would be capable of encapsulating and thus controlling the selectivity of bulky cofactors, molecular dynamics studies also suggest that POP conformational dynamics plays a role in its unique efficacy. These advances in scaffold selection, bioconjugation, and evolution form the basis of our ongoing efforts to control transition metal reactivity using protein scaffolds with the goal of enabling unique synthetic capabilities, including bioorthogonal catalysis.
Notes: ---
-
Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis
Review -
Acc. Chem. Res. 2019, 52, 576-584, 10.1021/acs.accounts.8b00625
Transition metal catalysis is a powerful tool for chemical synthesis, a standard by which understanding of elementary chemical processes can be measured, and a source of awe for those who simply appreciate the difficulty of cleaving and forming chemical bonds. Each of these statements is amplified in cases where the transition metal catalyst controls the selectivity of a chemical reaction. Enantioselective catalysis is a challenging but well-established phenomenon, and regio- or siteselective catalysis is increasingly common. On the other hand, transition-metal-catalyzed reactions are typically conducted under highly optimized conditions. Rigorous exclusion of air and water is common, and it is taken for granted that only a single substrate (of a particular class) will be present in a reaction, a desired site selectivity can be achieved by installing a directing group, and undesired reactivity can be blocked with protecting groups. These are all reasonable synthetic strategies, but they also highlight limits to catalyst control. The utility of transition metal catalysis could be greatly expanded if catalysts possessed the ability to regulate which molecules they encounter and the relative orientation of those molecules. The rapid and widespread adoption of stoichiometric bioorthogonal reactions illustrates the utility of robust reactions that proceed with high selectivity and specificity under mild reaction conditions. Expanding this capability beyond preprogrammed substrate pairs via catalyst control could therefore have an enormous impact on molecular science. Many metalloenzymes exhibit this level of catalyst control, and directed evolution can be used to rapidly improve the catalytic properties of these systems. On the other hand, the range of reactions catalyzed by enzymes is limited relative to that developed by chemists. The possibility of imparting enzyme-like activity, selectivity, and evolvability to reactions catalyzed by synthetic transition metal complexes has inspired the creation of artificial metalloenzymes (ArMs). The increasing levels of catalyst control exhibited by ArMs developed to date suggest that these systems could constitute a powerful platform for bioorthogonal transition metal catalysis and for selective catalysis in general. This Account outlines the development of a new class of ArMs based on a prolyl oligopeptidase (POP) scaffold. Studies conducted on POP ArMs containing a covalently linked dirhodium cofactor have shown that POP can impart enantioselectivity to a range of dirhodium-catalyzed reactions, increase reaction rates, and improve the specificity for reaction of dirhodium carbene intermediates with targeted organic substrates over components of cell lysate, including bulk water. Several design features of these ArMs enabled their evolution via random mutagenesis, which revealed that mutations throughout the POP scaffold, beyond the second sphere of the dirhodium cofactor, were important for ArM activity and selectivity. While it was anticipated that the POP scaffold would be capable of encapsulating and thus controlling the selectivity of bulky cofactors, molecular dynamics studies also suggest that POP conformational dynamics plays a role in its unique efficacy. These advances in scaffold selection, bioconjugation, and evolution form the basis of our ongoing efforts to control transition metal reactivity using protein scaffolds with the goal of enabling unique synthetic capabilities, including bioorthogonal catalysis.
Notes: ---
-
Bimetallic Copper-Heme-Protein-DNA Hybrid Catalyst for Diels Alder Reaction
-
Croat. Chem. Acta 2011, 84, 269-275, 10.5562/cca1828
A bimetallic heme-DNA cofactor, containing an iron and a copper center, was synthesized for the design of novel hybrid catalysts for stereoselective synthesis. The cofactor was used for the reconstitution of apo-myoglobin. Both the cofactor alone and its myoglobin adduct were used to catalyze a model Diels Alder reaction. Stereoselectivity of this conversion was analyzed by chiral HPLC. Reactions carried out in the presence of myoglobin-heme-Cu-DNA catalyst showed greater product conversion and stereoselectivity than those carried out with the heme-Cu-DNA cofactor. This observation suggested that the protein shell plays a significant role in the catalytic conversion.
Metal: CuLigand type: BipyridineHost protein: Myoglobin (Mb)Anchoring strategy: SupramolecularOptimization: ---Notes: Horse heart myoglobin
-
Binding Mechanisms of Half-Sandwich Rh(III) and Ru(II) Arene Complexes on Human Serum Albumin: a Comparative Study
-
J. Biol. Inorg. Chem. 2019, 24, 703-719, 10.1007/s00775-019-01683-0
Various half-sandwich ruthenium(II) arene complexes and rhodium(III) arene complexes have been intensively investigated due to their prominent anticancer activity. The interaction of the organometallic complexes of Ru(η6-p-cymene) and Rh(η5-C5Me5) with human serum albumin (HSA) was studied in detail by a combination of various methods such as ultrafiltration, capillary electrophoresis, 1H NMR spectroscopy, fluorometry and UV–visible spectrophotometry in the presence of 100 mM chloride ions. Binding characteristics of the organometallic ions and their complexes with deferiprone, 2-picolinic acid, maltol, 6-methyl-2-picolinic acid and 2-quinaldic acid were evaluated. Kinetic aspects and reversibility of the albumin binding are also discussed. The effect of low-molecular-mass blood components on the protein binding was studied in addition to the interaction of organorhodium complexes with cell culture medium components. The organometallic ions were found to bind to HSA to a high extent via a coordination bond. Release of the bound metal ions was kinetically hindered and could not be induced by the denaturation of the protein. Binding of the Ru(η6-p-cymene) triaqua cation was much slower (ca. 24 h) compared to the rhodium congener (few min), while their complexes interacted with the protein relatively fast (1–2 h). The studied complexes were bound to HSA coordinatively. The highly stable and kinetically inert 2-picolinate Ru(η6-p-cymene) complex bound in an associative manner preserving its original entity, while lower stability complexes decomposed partly or completely upon binding to HSA. Fast, non-specific and high-affinity binding of the complexes on HSA highlights their coordinative interaction with various types of proteins possibly decreasing effective drug concentration.
Ligand type: Bidentate ligandsHost protein: Human serum albumin (HSA)Anchoring strategy: DativeOptimization: ---Reaction: ---Max TON: ---ee: ---PDB: ---Notes: ---
-
Binding of Vanadium Ions and Complexes to Proteins and Enzymes in Aqueous Solution
Review -
Coord. Chem. Rev. 2021, 449, 214192, 10.1016/j.ccr.2021.214192
The understanding of the role of vanadium enzymes and of vanadium compounds (VCs) in biology, as well as the design of new vanadium-based species for catalysis, materials science and medicinal chemistry has exponentially increased during the last decades. In biological systems, VCs may rapidly interconvert under physiological conditions and several V-containing moieties may be formed and bind to proteins. These interactions play key roles in the form transported in blood, in the uptake by cells, in inhibition properties and mechanism of action of essential and pharmacologically active V species. In this review, we focus on the recent advances made, namely in the application of the theoretical methodologies that allowed the description of the coordinative and non-covalent VC–protein interactions. The text is organized in six main topics: a general overview of the most important experimental and computational techniques useful to study these systems, a discussion on the nature of binding process, the recent advances on the comprehension of the V-containing natural and artificial enzymes, the interaction of mononuclear VCs with blood and other physiologically relevant proteins, the binding of polyoxidovanadates(V) to proteins and, finally, the biological and therapeutic implications of the interaction of pharmacologically relevant VCs with proteins and enzymes. Recent developments on vanadium-containing nitrogenases, haloperoxidases and nitrate reductases, and binding of VCs to transferrin, albumins, immunoglobulins, hemoglobin, lysozyme, myoglobin, ubiquitin and cytochrome c are discussed. Challenges and ideas about desirable features and potential drawbacks of VCs in biology and medicine and future directions to explore this chemistry area are also presented. The deeper understanding of the interactions of V-species with proteins, and the discussed data may provide the basis to undertake the investigation, design and development of new potentially active VCs with a more solid knowledge to predict their binding to biological receptors at a molecular point of view.
Notes: ---
-
Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase
-
J. Am. Chem. Soc. 2021, 143, 617-622, 10.1021/jacs.0c10882
Devising artificial photoenzymes for abiological bond-forming reactions is of high synthetic value but also a tremendous challenge. Disclosed herein is the first photobiocatalytic cross-coupling of aryl halides enabled by a designer artificial dehalogenase, which features a genetically encoded benzophenone chromophore and site-specifically modified synthetic NiII(bpy) cofactor with tunable proximity to streamline the dual catalysis. Transient absorption studies suggest the likelihood of energy transfer activation in the elementary organometallic event. This design strategy is viable to significantly expand the catalytic repertoire of artificial photoenzymes for useful organic transformations.
Metal: NiLigand type: BipyridineHost protein: CO2-reducing photosensitizer protein (PSP)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ---
-
Biocompatibility and Therapeutic Potential of Glycosylated Albumin Artificial Metalloenzymes
-
Nat. Catal. 2019, 2, 780-792, 10.1038/s41929-019-0317-4
The ability of natural metalloproteins to prevent inactivation of their metal cofactors by biological metabolites, such as glutathione, is an area that has been largely ignored in the field of artificial metalloenzyme (ArM) development. Yet, for ArM research to transition into future therapeutic applications, biocompatibility remains a crucial component. The work presented here shows the creation of a human serum albumin-based ArM that can robustly protect the catalytic activity of a bound ruthenium metal, even in the presence of 20 mM glutathione under in vitro conditions. To exploit this biocompatibility, the concept of glycosylated artificial metalloenzymes (GArM) was developed, which is based on functionalizing ArMs with N-glycan targeting moieties. As a potential drug therapy, this study shows that ruthenium-bound GArM complexes could preferentially accumulate to varying cancer cell lines via glycan-based targeting for prodrug activation of the anticancer agent umbelliprenin using ring-closing metathesis.
Metal: RuLigand type: Hoveyda–GrubbsHost protein: Human serum albumin (HSA)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
-
Bioinspired Catalyst Design and Artificial Metalloenzymes
Review -
Chem. - Eur. J. 2011, 17, 4680-4698, 10.1002/chem.201003646
Many bioinspired transition‐metal catalysts have been developed over the recent years. In this review the progress in the design and application of ligand systems based on peptides and DNA and the development of artificial metalloenzymes are reviewed with a particular emphasis on the combination of phosphane ligands with powerful molecular recognition and shape selectivity of biomolecules. The various approaches for the assembly of these catalytic systems will be highlighted, and the possibilities that the use of the building blocks of Nature provide for catalyst optimisation strategies are discussed.
Notes: ---
-
Biomacromolecules as Ligands for Artificial Metalloenzymes
Review -
Comprehensive Inorganic Chemistry II 2013, 737-761, 10.1016/B978-0-08-097774-4.00626-4
First coordination sphere interactions usually are involved in metal-catalyzed enantioselective transformations: a chiral ligand directly linked to the metal dictates the enantiomeric outcome of a given reaction. A novel concept has emerged in the past 30 years: achiral metal complexes are inserted into proteins or DNA and the resulting artificial metalloenzymes catalyze various enantioselective transformations. In these hybrid catalysts, enantioselection is achieved with the help of the second coordination sphere, that is, a subtle combination of secondary interactions between the biomolecular scaffold, the catalyst, and the substrate. This chapter discusses the design of artificial metalloenzymes and their use in homogeneous catalysis.
Notes: Book chapter
-
Bioorganic and Bioinorganic Chemistry
Review -
Chimia 2010, 64, 846-854, 10.2533/chimia.2010.846
The interdisciplinary projects in bioinorganic and bioorganic chemistry of the Department of Chemistry, University of Basel led to the preparation of new systems that mimic biologically important processes and to the discovery of compounds from natural sources which are very promising with respect to medical applications. The advances in these areas are reported here.
Notes: ---
-
Biosynthesis of a Site-Specific DNA Cleaving Protein
-
J. Am. Chem. Soc. 2008, 130, 13194-13195, 10.1021/ja804653f
An E. coli catabolite activator protein (CAP) has been converted into a sequence-specific DNA cleaving protein by genetically introducing (2,2′-bipyridin-5-yl)alanine (Bpy-Ala) into the protein. The mutant CAP (CAP-K26Bpy-Ala) showed comparable binding affinity to CAP-WT for the consensus operator sequence. In the presence of Cu(II) and 3-mercaptopropionic acid, CAP-K26Bpy-Ala cleaves double-stranded DNA with high sequence specificity. This method should provide a useful tool for mapping the molecular details of protein−nucleic acid interactions.
Metal: CuLigand type: BipyridineHost protein: Catabolite activator protein (CAP)Anchoring strategy: ---Optimization: Chemical & geneticNotes: Catabolite activator protein from E. coli
Metal: FeLigand type: BipyridineHost protein: Catabolite activator protein (CAP)Anchoring strategy: ---Optimization: Chemical & geneticNotes: Catabolite activator protein from E. coli
-
Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation
-
Science 2012, 338, 500-503, 10.1126/science.1226132
Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C–H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.
Notes: ---
-
Bovine Serum Albumin-Cobalt(II) Schiff Base Complex Hybrid: An Efficient Artificial Metalloenzyme for Enantioselective Sulfoxidation using Hydrogen Peroxide
-
Dalton Trans. 2016, 45, 8061-8072, 10.1039/C5DT04507J
An artificial metalloenzyme (BSA–CoL) based on the incorporation of a cobalt(ii) Schiff base complex {CoL, H2L = 2,2′-[(1,2-ethanediyl)bis(nitrilopropylidyne)]bisphenol} with bovine serum albumin (BSA) has been synthesized and characterized.
Metal: CoHost protein: Bovine serum albumin (BSA)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
-
Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes
-
J. Am. Chem. Soc. 2019, 141, 15869-15878, 10.1021/jacs.9b06923
The biotin–streptavidin technology has been extensively exploited to engineer artificial metalloenzymes (ArMs) that catalyze a dozen different reactions. Despite its versatility, the homotetrameric nature of streptavidin (Sav) and the noncooperative binding of biotinylated cofactors impose two limitations on the genetic optimization of ArMs: (i) point mutations are reflected in all four subunits of Sav, and (ii) the noncooperative binding of biotinylated cofactors to Sav may lead to an erosion in the catalytic performance, depending on the cofactor:biotin-binding site ratio. To address these challenges, we report on our efforts to engineer a (monovalent) single-chain dimeric streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility of scdSav as host protein is highlighted for the asymmetric transfer hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning of the biotin-binding vestibule, unrivaled levels of activity and selectivity were achieved for the reduction of challenging prochiral imines. Comparison of the saturation kinetic data and X-ray structures of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav highlights the advantages of the presence of a single biotinylated cofactor precisely localized within the biotin-binding vestibule of the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated for the reduction of the salsolidine precursor (500 mM) to afford (R)-salsolidine in 90% ee and >17 000 TONs. Monovalent scdSav thus provides a versatile scaffold to evolve more efficient ArMs for in vivo catalysis and large-scale applications.
Notes: Additional PDB: 6S50
-
Building Reactive Copper Centers in Human Carbonic Anhydrase II
-
J. Biol. Inorg. Chem. 2013, 18, 595-598, 10.1007/s00775-013-1009-1
Reengineering metalloproteins to generate new biologically relevant metal centers is an effective a way to test our understanding of the structural and mechanistic features that steer chemical transformations in biological systems. Here, we report thermodynamic data characterizing the formation of two type-2 copper sites in carbonic anhydrase and experimental evidence showing one of these new, copper centers has characteristics similar to a variety of well-characterized copper centers in synthetic models and enzymatic systems. Human carbonic anhydrase II is known to bind two Cu2+ ions; these binding events were explored using modern isothermal titration calorimetry techniques that have become a proven method to accurately measure metal-binding thermodynamic parameters. The two Cu2+-binding events have different affinities (K a approximately 5 × 1012 and 1 × 1010), and both are enthalpically driven processes. Reconstituting these Cu2+ sites under a range of conditions has allowed us to assign the Cu2+-binding event to the three-histidine, native, metal-binding site. Our initial efforts to characterize these Cu2+ sites have yielded data that show distinctive (and noncoupled) EPR signals associated with each copper-binding site and that this reconstituted enzyme can activate hydrogen peroxide to catalyze the oxidation of 2-aminophenol.
Metal: CuLigand type: Amino acidHost protein: Human carbonic anhydrase II (hCAII)Anchoring strategy: DativeOptimization: ---Notes: Oxidation of 2-aminophenol with subsequent formation of 2-aminophenoxazinone. Reaction rate = 0.09 s-1
-
Burkavidin: A Novel Secreted Biotin-Binding Protein from the Human Pathogen Burkholderia Pseudomallei
-
Protein Expression Purif. 2011, 77, 131-139, 10.1016/j.pep.2011.01.003
The avidin–biotin technology has many applications, including molecular detection; immobilization; protein purification; construction of supramolecular assemblies and artificial metalloenzymes. Here we present the recombinant expression of novel biotin-binding proteins from bacteria and the purification and characterization of a secreted burkavidin from the human pathogen Burkholderia pseudomallei. Expression of the native burkavidin in Escherichia coli led to periplasmic secretion and formation of a biotin-binding, thermostable, tetrameric protein containing an intra-monomeric disulphide bond. Burkavidin showed one main species as measured by isoelectric focusing, with lower isoelectric point (pI) than streptavidin. To exemplify the potential use of burkavidin in biotechnology, an artificial metalloenzyme was generated using this novel protein-scaffold and shown to exhibit enantioselectivity in a rhodium-catalysed hydrogenation reaction.
Metal: RhLigand type: DiphenylphosphineHost protein: BurkavidinAnchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Capture and Characterization of a Reactive Haem– Carbenoid Complex in an Artificial Metalloenzyme
-
Nat. Catal. 2018, 1, 578-584, 10.1038/s41929-018-0105-6
Non-canonical amino acid ligands are useful for fine-tuning the catalytic properties of metalloenzymes. Here, we show that recombinant replacement of the histidine ligand proximal to haem in myoglobin with Nδ-methylhistidine enhances the protein’s promiscuous carbene-transfer chemistry, enabling efficient styrene cyclopropanation in the absence of reductant, even under aerobic conditions. The increased electrophilicity of the modified Fe(iii) centre, combined with subtle structural adjustments at the active site, allows direct attack of ethyl diazoacetate to produce a reactive carbenoid adduct, which has an unusual bridging Fe(iii)–C–N(pyrrole) configuration as shown by X-ray crystallography. Quantum chemical calculations suggest that the bridged complex equilibrates with the more reactive end-on isomer, ensuring efficient cyclopropanation. These findings underscore the potential of non-canonical ligands for extending the capabilities of metalloenzymes by opening up new reaction pathways and facilitating the characterization of reactive species that would not otherwise accumulate.
Notes: Structure of the Mb*(NMH) haem-iron complex
Notes: Structure of the Mb*(NMH) haem-iron–carbenoid complex
-
Carbene in Cupredoxin Protein Scaffolds: Replacement of a Histidine Ligand in the Active Site Substantially Alters Copper Redox Properties
-
Angew. Chem. Int. Ed. 2018, 130, 10837-10842, 10.1002/ange.201807168
Im Tausch gegen NHC: Die Einfügung eines N‐heterocyclischen Carbenliganden (grün/blau) als Ersatz für His in das aktive Zentrum des Redoxenzyms Azurin rekonstituiert das T1‐Kupferzentrum. Der resultierende Komplex ist spektroskopisch kaum unterscheidbar von der N‐Bindung von His oder N‐Methylimidazol, senkt aber signifikant das Reduktionspotential des Kupferzentrums und erleichtert dadurch Elektronentransferprozesse.
Notes: ---
-
Carbonic Anhydrase II as Host Protein for the Creation of a Biocompatible Artificial Metathesase
-
Org. Biomol. Chem. 2015, 13, 5652-5655, 10.1039/c5ob00428d
We report an efficient artificial metathesase which combines an arylsulfonamide anchor within the protein scaffold human carbonic anhydrase II.
Metal: RuLigand type: CarbeneHost protein: Human carbonic anhydrase II (hCAII)Anchoring strategy: DativeOptimization: Chemical & geneticNotes: Ring closing metathesis. 28 turnovers obtained under physiological conditions within 4 hours.
-
Catalysis and Electron Transfer in De Novo Designed Helical Scaffolds
Review -
Angew. Chem. Int. Ed. 2020, 59, 7678-7699, 10.1002/anie.201907502
The relationship between protein structure and function is one of the greatest puzzles within biochemistry. De novo metalloprotein design is a way to wipe the board clean and determine what is required to build in function from the ground up in an unrelated structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha-helical scaffolds. Examples of successful designs include those with carbonic anhydrase or nitrite reductase activity by incorporating a ZnHis3 or CuHis3 site, or that recapitulate the spectroscopic properties of unique electron-transfer sites in cupredoxins (CuHis2Cys) or rubredoxins (FeCys4). This work showcases the versatility of alpha helices as scaffolds for metalloprotein design and the progress that is possible through careful rational design. Our studies cover the invariance of carbonic anhydrase activity with different site positions and scaffolds, refinement of our cupredoxin models, and enhancement of nitrite reductase activity up to 1000-fold.
Notes: ---
-
Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering
-
Biochemistry 2012, 51, 3933-3940, 10.1021/bi201881p
Here we show that a recent computationally designed zinc-mediated protein interface is serendipitously capable of catalyzing carboxyester and phosphoester hydrolysis. Although the original motivation was to design a de novo zinc-mediated protein–protein interaction (called MID1-zinc), we observed in the homodimer crystal structure a small cleft and open zinc coordination site. We investigated if the cleft and zinc site at the designed interface were sufficient for formation of a primitive active site that can perform hydrolysis. MID1-zinc hydrolyzes 4-nitrophenyl acetate with a rate acceleration of 105 and a kcat/KM of 630 M–1 s–1 and 4-nitrophenyl phosphate with a rate acceleration of 104 and a kcat/KM of 14 M–1 s–1. These rate accelerations by an unoptimized active site highlight the catalytic power of zinc and suggest that the clefts formed by protein–protein interactions are well-suited for creating enzyme active sites. This discovery has implications for protein evolution and engineering: from an evolutionary perspective, three-coordinated zinc at a homodimer interface cleft represents a simple evolutionary path to nascent enzymatic activity; from a protein engineering perspective, future efforts in de novo design of enzyme active sites may benefit from exploring clefts at protein interfaces for active site placement.
Metal: ZnLigand type: Amino acidHost protein: Binding domain of Rabenosyn (Rab4)Anchoring strategy: DativeOptimization: Chemical & geneticNotes: ---
-
Catalysis Without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation
-
J. Mol. Catal. A: Chem. 2016, 416, 20-28, 10.1016/j.molcata.2016.02.015
A new artificial oxidase has been developed for selective transformation of thioanisole. The catalytic activity of an iron inorganic complex, FeLibu, embedded in a transport protein NikA has been investigated in aqueous media. High efficiency (up to 1367 t), frequency 459 TON min−1 and selectivity (up to 69%) make this easy to use catalytic system an asset for a sustainable chemistry.
Metal: FeLigand type: BPHMENHost protein: Human serum albumin (HSA)Anchoring strategy: SupramolecularOptimization: ---Notes: ---
-
Catalyst Design in Oxidation Chemistry; from KMnO4 to Artificial Metalloenzymes
Review -
Bioorg. Med. Chem. 2014, 22, 5657-5677, 10.1016/j.bmc.2014.07.002
Oxidation reactions are an important part of the synthetic organic chemist’s toolkit and continued advancements have, in many cases, resulted in high yields and selectivities. This review aims to give an overview of the current state-of-the-art in oxygenation reactions using both chemical and enzymatic processes, the design principles applied to date and a possible future in the direction of hybrid catalysts combining the best of chemical and natural design.
Notes: ---