53 publications

53 publications

8-Amino-5,6,7,8-tetrahydroquinoline in Iridium(III) Biotinylated Cp* Complex as Artificial Imine Reductase

Rimoldi, I.

New J. Chem., 2018, 10.1039/C8NJ04558E

Diamine ligands I–IV coordinated to an iridium metal complex with the biotin moiety anchored to the Cp* ring were investigated. This strategy, in contrast to the traditional biotin–streptavidin technology that uses a biotinylated ligand in the artificial imine reductase, is practical for envisaging how the enantiodiscrimination by different Streptavidin (Sav) mutants could influence the chiral environment of the metal cofactor. Only in the case of (R)-CAMPY IV did the chirality at the metal centre and the second coordination sphere environment, which was dictated by the host protein, operate in a synergistic way, producing better enantioselectivity at a S112M Sav catalyst/catalyst ratio of 1.0 : 2.5. Under these optimized conditions, the artificial imine reductase afforded a good enantiomeric excess (83%) in the asymmetric transfer hydrogenation of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline.


Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 32
ee: 83
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 99
ee: 13
PDB: ---
Notes: ---

A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell

Fussenegger, M.; Matile, S.; Ward, T. R.

Nat. Commun., 2018, 10.1038/s41467-018-04440-0

Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.


Metal: Ru
Ligand type: Cp; Quinoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Deallylation
Max TON: 33
ee: ---
PDB: ---
Notes: ---

Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation

Renaud, J.-L.; Ward, T. R.

Catal. Lett., 2016, 10.1007/s10562-015-1681-6

We report on the synthesis of biotinylated (cyclopentadienone)iron tricarbonyl complexes, the in situ generation of the corresponding streptavidin conjugates and their application in asymmetric hydrogenation of imines and ketones.


Metal: Fe
Ligand type: CO; Cyclopentadienone
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Hydrogenation
Max TON: 20
ee: 34
PDB: ---
Notes: ---

A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology

Ward, T. R.

J. Am. Chem. Soc., 2013, 10.1021/ja309974s

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.


Metal: Ir
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 14
ee: 11
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 100
ee: 79
PDB: ---
Notes: ---

An Artificial Metalloenzyme for Carbene Transfer Based on a Biotinylated Dirhodium Anchored Within Streptavidin

Ward, T. R.

Cat. Sci. Technol., 2018, 10.1039/C8CY00646F


Metal: Rh
Ligand type: Carboxylate
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Cyclopropanation
Max TON: ~60
ee: ---
PDB: ---
Notes: Cyclopropanation reaction was also performed in the E. coli periplasm.

Metal: Rh
Ligand type: Carboxylate
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: C-H insertion
Max TON: ~60
ee: ---
PDB: ---
Notes: ---

An Enantioselective Artificial Suzukiase Based on the Biotin–Streptavidin Technology

Ward, T. R.

Chem. Sci., 2015, 10.1039/c5sc03116h


Metal: Pd
Ligand type: Allyl; Phosphine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 88
ee: 80
PDB: ---
Notes: ---

Metal: Pd
Ligand type: Allyl; Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 5
ee: ---
PDB: ---
Notes: ---

An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades

Ward, T. R.

J. Am. Chem. Soc., 2016, 10.1021/jacs.6b02470


Metal: Ir
Ligand type: Cp*; Phenanthroline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: >999
ee: >99
PDB: ---
Notes: ---

Aqueous Oxidation of Alcohols Catalyzed by Artificial Metalloenzymes Based on the Biotin–Avidin Technology

Ward, T. R.

J. Organomet. Chem., 2005, 10.1016/j.jorganchem.2005.02.001


Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 200
ee: ---
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Avidin (Av)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 230
ee: ---
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Bipyridine; C6Me6
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 173
ee: ---
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 7.5
ee: ---
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Bipyridine; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 30
ee: ---
PDB: ---
Notes: ---

Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin

Ward, T. R.

J. Am. Chem. Soc., 2008, 10.1021/ja8017219


Metal: V
Ligand type: Water
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: 27
ee: 93
PDB: ---
Notes: ---

Artificial Metalloenzymes Based on Biotin-Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation

Ward, T. R.

Proc. Natl. Acad. Sci. U. S. A., 2005, 10.1073/pnas.0409684102


Metal: Ru
Ligand type: Amino-sulfonamide; P-cymene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 92
ee: 94
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 30
ee: 63
PDB: ---
Notes: ---

Artificial Metalloenzymes for Asymmetric Allylic Alkylation on the Basis of the Biotin–Avidin Technology

Ward, T. R.

Angew. Chem., Int. Ed., 2008, 10.1002/anie.200703159


Metal: Pd
Ligand type: Phosphine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Allylic alkylation
Max TON: 10
ee: 93
PDB: ---
Notes: ---

Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin-Avidin

Ward, T. R.

J. Am. Chem. Soc., 2003, 10.1021/ja035545i


Metal: Rh
Ligand type: Phosphine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Hydrogenation
Max TON: ---
ee: 96
PDB: ---
Notes: ---

Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein Accelerated Catalysis

Ward, T. R.

J. Organomet. Chem., 2004, 10.1016/j.jorganchem.2004.09.032


Metal: Rh
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Hydrogenation
Max TON: ---
ee: 94
PDB: ---
Notes: Reduction of acetamidoacrylic acid. 3.0-fold protein acceleration.

Metal: Rh
Host protein: Avidin (Av)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Hydrogenation
Max TON: ---
ee: 39
PDB: ---
Notes: Reduction of acetamidoacrylic acid. 12.0-fold protein acceleration.

Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-(Strept)Avidin Technology

Ward, T. R.

Chem. Commun., 2011, 10.1039/c1cc15004a


Metal: Ru
Ligand type: Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 14
ee: ---
PDB: ---
Notes: RCM

Metal: Ru
Ligand type: Carbene
Host protein: Avidin (Av)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 19
ee: ---
PDB: ---
Notes: RCM

Artificial Metalloenzymes for the Diastereoselective Reduction of NAD+ to NAD2H

Ward, T. R.

Org. Biomol. Chem., 2015, 10.1039/c4ob02071e


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Artificial Metalloenzymes: (Strept)avidin as Host for Enantioselective Hydrogenation by Achiral Biotinylated Rhodium-Diphosphine Complexes

Ward, T. R.

J. Am. Chem. Soc., 2004, 10.1021/ja0476718


Metal: Rh
Ligand type: Phosphine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Hydrogenation
Max TON: ---
ee: 94
PDB: ---
Notes: ---

Artificial Metalloproteins Containing Co4O4 Cubane Active Sites

Borovik, A. S.; Don Tilley, T.

J. Am. Chem. Soc., 2018, 10.1021/jacs.7b13052


Metal: Co
Ligand type: OAc; Pyridine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 6AUC
Notes: Co-complex in Sav WT

Metal: Co
Ligand type: OAc; Pyridine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 6AUE
Notes: Co-complex in Sav S112Y

Artificial Transfer Hydrogenases Based on the Biotin-(Strept)avidin Technology: Fine Tuning the Selectivity by Saturation Mutagenesis of the Host Protein

Ward, T. R.

J. Am. Chem. Soc., 2006, 10.1021/ja061580o


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 96
ee: 80
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 73
ee: 60
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 95
ee: 70
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; P-cymene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 79
ee: 97
PDB: ---
Notes: ---

Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines

Ward, T. R.

Angew. Chem., Int. Ed., 2011, 10.1002/anie.201007820


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 4000
ee: 96
PDB: 3PK2
Notes: ---

Metal: Rh
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 94
ee: 52
PDB: 3PK2
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; P-cymene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 97
ee: 22
PDB: 3PK2
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 76
ee: 12
PDB: 3PK2
Notes: ---

Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation

Rovis, T.; Ward, T. R.

Science, 2012, 10.1126/science.1226132


Metal: Rh
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: C-H activation
Max TON: 95
ee: 82
PDB: ---
Notes: ---

Chemical Optimization of Artificial Metalloenzymes Based on the Biotin-Avidin Technology: (S)-Selective and Solvent-Tolerant Hydrogenation Catalysts via the Introduction of Chiral Amino Acid Spacers

Ward, T. R.

Chem. Commun., 2005, 10.1039/b509015f


Metal: Rh
Ligand type: Phosphine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Hydrogenation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes

Ward, T. R.; Woolfson, D. N.

ACS Catal., 2018, 10.1021/acscatal.7b03773


Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 970
ee: 13
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 158
ee: 82
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Olefin metathesis
Max TON: 105
ee: ---
PDB: ---
Notes: RCM, biotinylated Hoveyda-Grubbs second generation catalyst

Metal: ---
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Anion-π catalysis
Max TON: 6
ee: 41
PDB: ---
Notes: No metal

Computational Insights on an Artificial Imine Reductase Based on the Biotin-Streptavidin Technology

Maréchal, J.-D.

ACS Catal., 2014, 10.1021/cs400921n


Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: ---
ee: 96
PDB: 3PK2
Notes: Prediction of the enantioselectivity by computational methods.

Counter Propagation Artificial Neural Networks Modeling of an Enantioselectivity of Artificial Metalloenzymes

Novič, M.

Mol. Divers., 2007, 10.1007/s11030-008-9068-x


Metal: Rh
Ligand type: Diphenylphosphine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Hydrogenation
Max TON: ---
ee: 94
PDB: ---
Notes: Computational prediction of the enantioselectivity of the hydrogenation reaction catalysed by the ArM.

Cross-Regulation of an Artificial Metalloenzyme

Ward, T. R.

Angew. Chem., Int. Ed., 2017, 10.1002/anie.201702181


Metal: Ir
Ligand type: Cp*; Phenanthroline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 96
ee: ---
PDB: ---
Notes: Cross-regulated reduction of the antibiotic enrofloxacin by an ArM.

Directed Evolution of an Artificial Imine Reductase

Maréchal, J.-D.; Ward, T. R.

Angew. Chem., Int. Ed., 2018, 10.1002/anie.201711016


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 380
ee: 95
PDB: 6ESS
Notes: Salsolidine formation; Sav mutant S112A-N118P-K121A-S122M: (R)-selective

Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 220
ee: 85
PDB: 6ESU
Notes: Salsolidine formation; Sav mutant S112R-N118P-K121A-S122M-L124Y: (S)-selective

Directed Evolution of Artificial Metalloenzymes for In Vivo Metathesis

Panke, S.; Ward, T. R.

Nature, 2016, 10.1038/nature19114


Metal: Ru
Ligand type: Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Olefin metathesis
Max TON: 610
ee: ---
PDB: ---
Notes: Reaction in the periplasm

Directed Evolution of Hybrid Enzymes: Evolving Enantioselectivity of an Achiral Rh-Complex Anchored to a Protein

Reetz, M. T.

Chem. Commun., 2006, 10.1039/b610461d


Metal: Rh
Ligand type: COD; Phosphine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Hydrogenation
Max TON: 4500
ee: 65
PDB: ---
Notes: ---

E. coli Surface Display of Streptavidin for Directed Evolution of an Allylic Deallylase

Ward, T. R.

Chem. Sci., 2018, 10.1039/c8sc00484f


Metal: Ru
Ligand type: Cp; Quinoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Deallylation
Max TON: 148
ee: ---
PDB: 6FH8
Notes: ---

Efficient in Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme

Ward, T. R.

ACS Catal., 2016, 10.1021/acscatal.6b00258


Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: >1980
ee: ---
PDB: ---
Notes: ArM works in combination with the ene reductase (ER) of the Old Yellow Enzyme family fromThermus scotuductus (TsOYE).