153 publications

153 publications

Albumin as a Promiscuous Biocatalyst in Organic Synthesis

Review

Gaggero, N.

RSC Adv. 2015, 5, 10588-10598, 10.1039/C4RA11206G

Albumin emerged as a biocatalyst in 1980 and the continuing interest in this protein is proved by numerous papers.


Notes: ---

Aqueous Olefin Metathesis: Recent Developments and Applications

Review

Ward, T.R.

Beilstein J. Org. Chem. 2019, 15, 445-468, 10.3762/bjoc.15.39

Olefin metathesis is one of the most powerful C–C double-bond-forming reactions. Metathesis reactions have had a tremendous impact in organic synthesis, enabling a variety of applications in polymer chemistry, drug discovery and chemical biology. Although challenging, the possibility to perform aqueous metatheses has become an attractive alternative, not only because water is a more sustainable medium, but also to exploit biocompatible conditions. This review focuses on the progress made in aqueous olefin metatheses and their applications in chemical biology.


Notes: ---

Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure

Review

DeGrado, W.F.; Lombardi, A.

Eur. J. Inorg. Chem. 2015, 2015, 3371-3390, 10.1002/ejic.201500470

A single polypeptide chain may provide an astronomical number of conformers. Nature selected only a trivial number of them through evolution, composing an alphabet of scaffolds, that can afford the complete set of chemical reactions needed to support life. These structural templates are so stable that they allow several mutations without disruption of the global folding, even having the ability to bind several exogenous cofactors. With this perspective, metal cofactors play a crucial role in the regulation and catalysis of several processes. Nature is able to modulate the chemistry of metals, adopting only a few ligands and slightly different geometries. Several scaffolds and metal‐binding motifs are representing the focus of intense interest in the literature. This review discusses the widespread four‐helix bundle fold, adopted as a scaffold for metal binding sites in the context of de novo protein design to obtain basic biochemical components for biosensing or catalysis. In particular, we describe the rational refinement of structure/function in diiron–oxo protein models from the due ferri (DF) family. The DF proteins were developed by us through an iterative process of design and rigorous characterization, which has allowed a shift from structural to functional models. The examples reported herein demonstrate the importance of the synergic application of de novo design methods as well as spectroscopic and structural characterization to optimize the catalytic performance of artificial enzymes.


Notes: ---

Artificial Enzymes Based on Supramolecular Scaffolds

Review

Liu, J.

Chem. Soc. Rev. 2012, 41, 7890, 10.1039/c2cs35207a

Enzymes are nanometer-sized molecules with three-dimensional structures created by the folding and self-assembly of polymeric chain-like components through supramolecular interactions. They are capable of performing catalytic functions usually accompanied by a variety of conformational states. The conformational diversities and complexities of natural enzymes exerted in catalysis seriously restrict the detailed understanding of enzymatic mechanisms in molecular terms. A supramolecular viewpoint is undoubtedly helpful in understanding the principle of enzyme catalysis. The emergence of supramolecular artificial enzymes therefore provides an alternative way to approach the structural complexity and thus to unravel the mystery of enzyme catalysis. This critical review covers the recent development of artificial enzymes designed based on supramolecular scaffolds ranging from the synthetic macrocycles to self-assembled nanometer-sized objects. Such findings are anticipated to facilitate the design of supramolecular artificial enzymes as well as their potential uses in important fields, such as manufacturing and food industries, environmental biosensors, pharmaceutics and so on.


Notes: ---

Artificial Hydrogenase: Biomimetic Approaches Controlling Active Molecular Catalysts

Review

Onoda, A.

Curr. Opin. Chem. Biol. 2015, 25, 133-140, 10.1016/j.cbpa.2014.12.041

Hydrogenase catalyses reversible transformation of H2 to H+ using an active site which includes an iron or nickel atom. Synthetic model complexes and molecular catalysts inspired by nature have unveiled the structural and functional basis of the active site with remarkable accuracy and this has led to the discovery of active synthetic catalysts. To further improve the activity of such molecular catalysts, both the first and outer coordination spheres should be well-organized and harmonized for an efficient shuttling of H+, electrons, and H2. This article reviews recent advances in the design and catalytic properties of artificial enzymes that mimic the hydrogenase active site and the outer coordination sphere in combination with a peptide or protein scaffold.


Notes: ---

Artificial Hydrogenases: Biohybrid and Supramolecular Systems for Catalytic Hydrogen Production or Uptake

Review

Fontecave, M.

Curr. Opin. Chem. Biol. 2015, 25, 36-47, 10.1016/j.cbpa.2014.12.018

There is an urgent need for cheap, abundant and efficient catalysts as an alternative to platinum for hydrogen production and oxidation in (photo)electrolyzers and fuel cells. Hydrogenases are attractive solutions. These enzymes use exclusively nickel and iron in their active sites and function with high catalytic rates at the thermodynamic equilibrium. As an alternative, a number of biomimetic and bioinspired catalysts for H2 production and/or uptake, based on Ni, Fe and Co, have been developed and shown to display encouraging performances. In this review we discuss specifically recent approaches aiming at incorporating these compounds within oligomeric and polymeric hosts. The latter are most often biological compounds (peptides, proteins, polysaccharides, etc.) but we also discuss non-biological scaffolds (synthetic polymers, Metal–organic-Frameworks, etc.) which can provide the appropriate environment to tune the activity and stability of the synthetic catalysts. These supramolecular catalytic systems thus define a class of original compounds so-called artificial hydrogenases.


Notes: ---

Artificial Imine Reductases: Developments and Future Directions

Review

Duhme-Klair, A.K.

RSC Chem. Biol. 2020, 1, 369-378, 10.1039/d0cb00113a

Biocatalytic imine reduction has been a topic of intense research by the artificial metalloenzyme community in recent years. Artificial constructs, together with natural enzymes, have been engineered to produce chiral amines with high enantioselectivity. This review examines the design of the main classes of artificial imine reductases reported thus far and summarises approaches to enhancing their catalytic performance using complementary methods. Examples of utilising these biocatalysts in vivo or in multi-enzyme cascades have demonstrated the potential that artIREDs can offer, however, at this time their use in biocatalysis remains limited. This review explores the current scope of artIREDs and the strategies used for catalyst improvement, and examines the potential for artIREDs in the future.


Notes: ---

Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors

Review

Wang, J.

ACS Catal. 2018, 8, 1851-1863, 10.1021/acscatal.7b03754

There are 20 proteinogenic amino acids and a limited number of cofactors naturally available to build enzymes. Genetic codon expansion enables us to incorporate more than 200 unnatural amino acids into proteins using cell translation machinery, greatly expanding structures available to protein chemists. Such tools enable scientists to mimic the active site of an enzyme to tune enzymatic activity, anchor cofactors, and immobilize enzymes on electrode surfaces. Non-native cofactors can be incorporated into the protein through covalent or noncovalent interactions, expanding the reaction scope of existing enzymes. The review discusses strategies to incorporate unnatural amino acids and non-native cofactors and their applications in tuning and expanding enzymatic activities of artificial metalloenzymes.


Notes: ---

Artificial Metalloenzymes

Review

Roelfes, G.

ChemCatChem 2010, 2, 916-927, 10.1002/cctc.201000011

Artificial metalloenzymes have emerged as a promising approach to merge the attractive properties of homogeneous catalysis and biocatalysis. The activity and selectivity, including enantioselectivity, of natural metalloenzymes are due to the second coordination sphere interactions provided by the protein. Artificial metalloenzymes aim at harnessing second coordination sphere interactions to create transition metal complexes that display enzyme‐like activities and selectivities. In this Review, the various approaches that can be followed for the design and optimization of an artificial metalloenzyme are discussed. An overview of the synthetic transformations that have been achieved using artificial metalloenzymes is provided, with a particular focus on recent developments. Finally, the role that the second coordination sphere plays in artificial metalloenzymes and their potential for synthetic applications are evaluated.


Notes: ---

Artificial Metalloenzymes

Review

Ward, T.R.

Effects of Nanoconfinement on Catalysis 2017, 49-82, 10.1007/978-3-319-50207-6_3

While chemists are developing confined environments for catalysis, nature has evolved highly elaborate compartments to carry out reactions. Proteins offer such catalytic nano-environments that accept specific substrates to yield highly enantioenriched products. Metalloenzymes form a subclass that combines the functional diversity of proteins with the promiscuous activities of metals. In recent years, a variety of artificial metalloenzymes (ArMs) has been created upon incorporation of metal complexes into a protein scaffold. The following chapter discusses some of the protein scaffolds exploited for the creation of artificial metalloenzymes. Focus is laid on artificial metalloenzymes that catalyze abiotic and asymmetric reactions. Each subchapter presents the unique characteristics of a scaffold followed by a description of the reactions that were performed with it.


Notes: Book chapter

Artificial Metalloenzymes and Metallopeptide Catalysts for Organic Synthesis

Review

Lewis, J.C.

ACS Catal. 2013, 3, 2954-2975, 10.1021/cs400806a

Transition metal catalysts and enzymes possess unique and often complementary properties that have made them important tools for chemical synthesis. The potential practical benefits of catalysts that combine these properties and a desire to understand how the structure and reactivity of metal and peptide components affect each other have driven researchers to create hybrid metal–peptide catalysts since the 1970s. The hybrid catalysts developed to date possess unique compositions of matter at the inorganic/biological interface that often pose significant challenges from design, synthesis, and characterization perspectives. Despite these obstacles, researchers have developed systems in which secondary coordination sphere effects impart selectivity to metal catalysts, accelerate chemical reactions, and are systematically optimized via directed evolution. This perspective outlines fundamental principles, key developments, and future prospects for the design, preparation, and application of peptide- and protein-based hybrid catalysts for organic transformations.


Notes: ---

Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions

Review

Reetz, M.T.

Chem. Rec. 2012, 12, 391-406, 10.1002/tcr.201100043

Numerous enzymes are useful catalysts in synthetic organic chemistry, but they cannot catalyze the myriad transition‐metal‐mediated transformations customary in daily chemical work. For this reason the concept of directed evolution of hybrid catalysts was proposed some time ago. A synthetic ligand/transition‐metal moiety is anchored covalently or non‐covalently to a host protein, thereby generating a single artificial metalloenzyme which can then be optimized by molecular biological methods. In the quest to construct an appropriate experimental platform for asymmetric Diels–Alder reactions amenable to this Darwinian approach to catalysis, specifically those not currently possible using traditional chiral transition‐metal catalysts, two strategies have been developed which are reviewed here. One concerns the supramolecular anchoring of a Cu(II)‐phthalocyanine complex to serum albumins; the other is based on the design of a Cu(II)‐specific binding site in a thermostable protein host (tHisF), leading to 46–98% ee in a model Diels–Alder reaction. This sets the stage for genetic fine‐tuning using the methods of directed evolution.


Notes: ---

Artificial Metalloenzymes as Selective Catalysts in Aqueous Media

Review

Ward, T.R.

Coord. Chem. Rev. 2008, 252, 751-766, 10.1016/j.ccr.2007.09.016

The fusion of homogeneous and enzymatic catalysis has recently drawn attention due to reported novel activities and high selectivities. The incorporation of metal-catalysts into proteins combines the advantages of both catalytic strategies. Herein we summarize recent approaches of artificial metalloenzymes applied to catalysis. The discussion includes different strategies of anchoring and screening for improved selectivity.


Notes: ---

Artificial Metalloenzymes Based on the Biotin-Avidin Technology: Enantioselective Catalysis and Beyond

Review

Ward, T.R.

Acc. Chem. Res. 2011, 44, 47-57, 10.1021/ar100099u

Artificial metalloenzymes are created by incorporating an organometallic catalyst within a host protein. The resulting hybrid can thus provide access to the best features of two distinct, and often complementary, systems: homogeneous and enzymatic catalysts. The coenzyme may be positioned with covalent, dative, or supramolecular anchoring strategies. Although initial reports date to the late 1970s, artificial metalloenzymes for enantioselective catalysis have gained significant momentum only in the past decade, with the aim of complementing homogeneous, enzymatic, heterogeneous, and organic catalysts. Inspired by a visionary report by Wilson and Whitesides in 1978, we have exploited the potential of biotin−avidin technology in creating artificial metalloenzymes. Owing to the remarkable affinity of biotin for either avidin or streptavidin, covalent linking of a biotin anchor to a catalyst precursor ensures that, upon stoichiometric addition of (strept)avidin, the metal moiety is quantitatively incorporated within the host protein. In this Account, we review our progress in preparing and optimizing these artificial metalloenzymes, beginning with catalytic hydrogenation as a model and expanding from there. These artificial metalloenzymes can be optimized by both chemical (variation of the biotin−spacer−ligand moiety) and genetic (mutation of avidin or streptavidin) means. Such chemogenetic optimization schemes were applied to various enantioselective transformations. The reactions implemented thus far include the following: (i) The rhodium-diphosphine catalyzed hydrogenation of N-protected dehydroaminoacids (ee up to 95%); (ii) the palladium-diphosphine catalyzed allylic alkylation of 1,3-diphenylallylacetate (ee up to 95%); (iii) the ruthenium pianostool-catalyzed transfer hydrogenation of prochiral ketones (ee up to 97% for aryl-alkyl ketones and ee up to 90% for dialkyl ketones); (iv) the vanadyl-catalyzed oxidation of prochiral sulfides (ee up to 93%). A number of noteworthy features are reminiscent of homogeneous catalysis, including straightforward access to both enantiomers of the product, the broad substrate scope, organic solvent tolerance, and an accessible range of reactions that are typical of homogeneous catalysts. Enzyme-like features include access to genetic optimization, an aqueous medium as the preferred solvent, Michaelis−Menten behavior, and single-substrate derivatization. The X-ray characterization of artificial metalloenzymes provides fascinating insight into possible enantioselection mechanisms involving a well-defined second coordination sphere environment. Thus, such artificial metalloenzymes combine attractive features of both homogeneous and enzymatic kingdoms. In the spirit of surface borrowing, that is, modulating ligand affinity by harnessing existing protein surfaces, this strategy can be extended to selectively binding streptavidin-incorporated biotinylated ruthenium pianostool complexes to telomeric DNA. This application paves the way for chemical biology applications of artificial metalloenzymes.


Notes: ---

Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities

Review

Ward, T.R.

Acc. Chem. Res. 2016, 49, 1711-1721, 10.1021/acs.accounts.6b00235

The biotin–streptavidin technology offers an attractive means to engineer artificial metalloenzymes (ArMs). Initiated over 50 years ago by Bayer and Wilchek, the biotin–(strept)avidin techonology relies on the exquisite supramolecular affinity of either avidin or streptavidin for biotin. This versatile tool, commonly referred to as “molecular velcro”, allows nearly irreversible anchoring of biotinylated probes within a (strept)avidin host protein. Building upon a visionary publication by Whitesides from 1978, several groups have been exploiting this technology to create artificial metalloenzymes. For this purpose, a biotinylated organometallic catalyst is introduced within (strept)avidin to afford a hybrid catalyst that combines features reminiscent of both enzymes and organometallic catalysts. Importantly, ArMs can be optimized by chemogenetic means. Combining a small collection of biotinylated organometallic catalysts with streptavidin mutants allows generation of significant diversity, thus allowing optimization of the catalytic performance of ArMs. Pursuing this strategy, the following reactions have been implemented: hydrogenation, alcohol oxidation, sulfoxidation, dihydroxylation, allylic alkylation, transfer hydrogenation, Suzuki cross-coupling, C–H activation, and metathesis. In this Account, we summarize our efforts in the latter four reactions. X-ray analysis of various ArMs based on the biotin–streptavidin technology reveals the versatility and commensurability of the biotin-binding vestibule to accommodate and interact with transition states of the scrutinized organometallic transformations. In particular, streptavidin residues at positions 112 and 121 recurrently lie in close proximity to the biotinylated metal cofactor. This observation led us to develop a streamlined 24-well plate streptavidin production and screening platform to optimize the performance of ArMs. To date, most of the efforts in the field of ArMs have focused on the use of purified protein samples. This seriously limits the throughput of the optimization process. With the ultimate goal of complementing natural enzymes in the context of synthetic and chemical biology, we outline the milestones required to ultimately implement ArMs within a cellular environment. Indeed, we believe that ArMs may allow signficant expansion of the natural enzymes’ toolbox to access new-to-nature reactivities in vivo. With this ambitious goal in mind, we report on our efforts to (i) activate the biotinylated catalyst precursor upon incorporation within streptavidin, (ii) minimize the effect of the cellular environment on the ArM’s performance, and (iii) demonstrate the compatibility of ArMs with natural enzymes in cascade reactions.


Notes: ---

Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution

Review

Ward, T.R.

Acc. Chem. Res. 2019, 52, 585-595, 10.1021/acs.accounts.8b00618

Artificial metalloenzymes (ArMs) result from anchoring a metal-containing moiety within a macromolecular scaffold (protein or oligonucleotide). The resulting hybrid catalyst combines attractive features of both homogeneous catalysts and enzymes. This strategy includes the possibility of optimizing the reaction by both chemical (catalyst design) and genetic means leading to achievement of a novel degree of (enantio)selectivity, broadening of the substrate scope, or increased activity, among others. In the past 20 years, the Ward group has exploited, among others, the biotin–(strept)avidin technology to localize a catalytic moiety within a well-defined protein environment. Streptavidin has proven versatile for the implementation of ArMs as it offers the following features: (i) it is an extremely robust protein scaffold, amenable to extensive genetic manipulation and mishandling, (ii) it can be expressed in E. coli to very high titers (up to >8 g·L–1 in fed-batch cultures), and (iii) the cavity surrounding the biotinylated cofactor is commensurate with the size of a typical metal-catalyzed transition state. Relying on a chemogenetic optimization strategy, varying the orientation and the nature of the biotinylated cofactor within genetically engineered streptavidin, 12 reactions have been reported by the Ward group thus far. Recent efforts within our group have focused on extending the ArM technology to create complex systems for integration into biological cascade reactions and in vivo. With the long-term goal of complementing in vivo natural enzymes with ArMs, we summarize herein three complementary research lines: (i) With the aim of mimicking complex cross-regulation mechanisms prevalent in metabolism, we have engineered enzyme cascades, including cross-regulated reactions, that rely on ArMs. These efforts highlight the remarkable (bio)compatibility and complementarity of ArMs with natural enzymes. (ii) Additionally, multiple-turnover catalysis in the cytoplasm of aerobic organisms was achieved with ArMs that are compatible with a glutathione-rich environment. This feat is demonstrated in HEK-293T cells that are engineered with a gene switch that is upregulated by an ArM equipped with a cell-penetrating module. (iii) Finally, ArMs offer the fascinating prospect of “endowing organometallic chemistry with a genetic memory.” With this goal in mind, we have identified E. coli’s periplasmic space and surface display to compartmentalize an ArM, while maintaining the critical phenotype–genotype linkage. This strategy offers a straightforward means to optimize by directed evolution the catalytic performance of ArMs. Five reactions have been optimized following these compartmentalization strategies: ruthenium-catalyzed olefin metathesis, ruthenium-catalyzed deallylation, iridium-catalyzed transfer hydrogenation, dirhodium-catalyzed cyclopropanation and carbene insertion in C–H bonds. Importantly, >100 turnovers were achieved with ArMs in E. coli whole cells, highlighting the multiple turnover catalytic nature of these systems.


Notes: ---

Artificial Metalloenzymes: Challenges and Opportunities

Review

Ward, T.R.

ACS Cent. Sci. 2019, 5, 1120-1136, 10.1021/acscentsci.9b00397

Artificial metalloenzymes (ArMs) result from the incorporation of an abiotic metal cofactor within a protein scaffold. From the earliest techniques of transition metals adsorbed on silk fibers, the field of ArMs has expanded dramatically over the past 60 years to encompass a range of reaction classes and inspired approaches: Assembly of the ArMs has taken multiple forms with both covalent and supramolecular anchoring strategies, while the scaffolds have been intuitively selected and evolved, repurposed, or designed in silico. Herein, we discuss some of the most prominent recent examples of ArMs to highlight the challenges and opportunities presented by the field.


Notes: ---

Artificial Metalloenzymes: Combining the Best Features of Homogeneous and Enzymatic Catalysis

Review

Ward, T.R.

Synlett 2009, 2009, 3225-3236, 10.1055/s-0029-1218305

By combining homogeneous with enzymatic catalysis, artificial metalloenzymes offer new perspectives for conferring unnatural activities to biomolecules. The article reassembles the important advances in the field of these hybrid catalysts and summarizes the contributions of our group to this continuously growing field of research.


Notes: ---

Artificial Metalloenzymes Containing an Organometallic Active Site

Review

Onoda, A.; Salmain, M.

Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging 2014, 305-338, 10.1002/9783527673438.ch10

Enzymes are the catalysts of the living world. Nature has tailored proteins to catalyze an incredibly wide range of reactions with exquisite selectivity and efficiency under very mild conditions of temperature, pH, pressure, and so on. Protein engineering combined with molecular modeling techniques affords tailor‐made biocatalysts for the industrial production of chiral synthons. Nonetheless, endowing a given protein scaffold with a totally new activity remains a challenging task for the biochemist. Among the current strategies to impart proteins with unnatural activity, those dealing with the construction of artificial metalloenzymes are particularly promising. By definition, artificial metalloenzymes are hybrid catalysts resulting from the incorporation of a transition metal species within a biomacromolecular scaffold. The rationale behind this concept is to combine the wide catalytic scope of transition metal complexes with the high activity and selectivity of biocatalysts. In most of the hybrid catalysts reported so far, the roles devoted to both partners are clearly separated: the metal complex being responsible for reactivity, while the protein environment is used to induce selectivity in the chemical process. In that, artificial metalloenzymes truly resemble enzymes whose efficiency relies on both the active site and the second sphere of coordination (also called the outer coordination sphere). In this chapter, we intend to give an overview of the various anchoring strategies reported over the last decade for the controlled, site‐selective attachment of nonnative metal cofactors within protein matrices together with the activity/selectivity displayed by these hybrid enzymes.


Notes: Book chapter

Artificial Metalloenzymes Derived from Three-Helix Bundles

Review

Pecoraro, V.L.

Curr. Opin. Chem. Biol. 2015, 25, 65-70, 10.1016/j.cbpa.2014.12.034

Three-helix bundles and coiled-coil motifs are well-established de novo designed scaffolds that have been investigated for their metal-binding and catalytic properties. Satisfaction of the primary coordination sphere for a given metal is sufficient to introduce catalytic activity and a given structure may catalyze different reactions dependent on the identity of the incorporated metal. Here we describe recent contributions in the de novo design of metalloenzymes based on three-helix bundles and coiled-coil motifs, focusing on non-heme systems for hydrolytic and redox chemistry.


Notes: ---

Artificial Metalloenzymes for Asymmetric Catalysis by Creation of Novel Active Sites in Protein and DNA Scaffolds

Review

Roelfes, G.

Isr. J. Chem. 2015, 55, 21-31, 10.1002/ijch.201400094

Artificial metalloenzymes have emerged as a promising new approach to asymmetric catalysis. In our group, we are exploring novel artificial metalloenzyme designs involving creation of a new active site in a protein or DNA scaffold that does not have an existing binding pocket. In this review, we give an overview of the developments in the two approaches to artificial metalloenzymes for asymmetric catalysis investigated in our group: creation of a novel active site on a peptide or protein dimer interface and using DNA as a scaffold for artificial metalloenzymes.


Notes: ---

Artificial Metalloenzymes for Enantioselective Catalysis

Review

Roelfes, G.

Curr. Opin. Chem. Biol. 2014, 19, 135-143, 10.1016/j.cbpa.2014.02.002

Artificial metalloenzymes have emerged over the last decades as an attractive approach towards combining homogeneous catalysis and biocatalysis. A wide variety of catalytic transformations have been established by artificial metalloenzymes, thus establishing proof of concept. The field is now slowly transforming to take on new challenges. These include novel designs, novel catalytic reactions, some of which have no equivalent in both homogenous catalysis and biocatalysis and the incorporation of artificial metalloenzymes in chemoenzymatic cascades. Some of these developments represent promising steps towards integrating artificial metalloenzymes in biological systems. This review will focus on advances in this field and perspectives discussed.


Notes: ---

Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology

Review

Ward, T.R.

Chimia 2008, 62, 956-961, 10.2533/chimia.2008.956

Artificial metalloenzymes, based on the incorporation of a biotinylated catalytically active organometallic moiety within streptavidin, offer an attractive alternative to homogeneous, heterogeneous and enzymatic catalysis. In this account, we outline our recent results and implications in the developments of such artificial metalloenzymes for various asymmetric transformations, including hydrogenation, transfer hydrogenation, allylic alkylation and sulfoxidation.


Notes: ---

Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology

Review

Ward, T.R.

Top. Organomet. Chem. 2009, 10.1007/3418_2008_3

Artificial metalloenzymes can be created by incorporating an active metal catalyst precursor in a macromolecular host. When considering such artificial metalloenzymes, the first point to address is how to localize the active metal moiety within the protein scaffold. Although a covalent anchoring strategy may seem most attractive at first, supramolecular anchoring strategy has proven most successful thus far. In this context and inspired by Whitesides’ seminal paper, we have exploited the biotin–avidin technology to anchor a biotinylated active metal catalyst precursor within either avidin or streptavidin. A combined chemical and genetic strategy allows a rapid (chemogenetic) optimization of both the activity and the selectivity of the resulting artificial metalloenzymes. The chiral environment, provided by second coordination sphere interactions between the metal and the host protein, can be varied by introduction of a spacer between the biotin anchor and the metal moiety or by variation of the ligand scaffold. Alternatively, mutagenesis of the host protein allows a fine tuning of the activity and the selectivity. With this protocol, we have been able to produce artificial metalloenzymes based on the biotin–avidin technology for the enantioselective hydrogenation of N-protected dehydroaminoacids, the transfer hydrogenation of prochiral ketones as well as the allylic alkylation of symmetric substrates. In all cases selectivities >90% were achieved. Most recently, guided by an X-ray structure of an artificial metalloenzyme, we have extended the chemogenetic optimization to a designed evolution scheme. Designed evolution combines rational design with combinatorial screening. In this chapter, we emphasize the similarities and the differences between artificial metalloenzymes and their homogeneous or enzymatic counterparts.


Notes: Book chapter

Artificial Metalloenzymes for Enantioselective Catalysis Based on the Noncovalent Incorporation of Organometallic Moieties in a Host Protein

Review

Ward, T.R.

Chem. - Eur. J. 2005, 11, 3798-3804, 10.1002/chem.200401232

Enzymatic and homogeneous catalysis offer complementary means to produce enantiopure products. Incorporation of achiral, biotinylated aminodiphosphine–rhodium complexes in (strept)avidin affords enantioselective hydrogenation catalysts. A combined chemogenetic procedure allows the optimization of the activity and the selectivity of such artificial metalloenzymes: the reduction of acetamidoacrylate proceeds to produce N‐acetamidoalanine in either 96 % ee (R) or 80 % ee (S). In addition to providing a chiral second coordination sphere and, thus, selectivity to the catalyst, the phenomenon of protein‐accelerated catalysis (e.g., increased activity) was unraveled. Such artificial metalloenzymes based on the biotin–avidin technology display features that are reminiscent of both homogeneous and of enzymatic catalysis.


Notes: ---

Artificial Metalloenzymes for Enantioselective Catalysis: Recent Advances

Review

Ward, T.R.

ChemBioChem 2006, 7, 1845-1852, 10.1002/cbic.200600264

Creating new catalytic function in proteins. Anchoring an organometallic moiety within a protein affords artificial metalloenzymes for enantioselective catalysis. Both chemical and genetic tools can be applied in the optimization of such systems, which lie at the interface between homogeneous and enzymatic catalysis. This minireview presents the latest developments in the field of artificial metalloenzymes.


Notes: ---

Artificial Metalloenzymes for Hydrogenation and Transfer Hydrogenation Reactions

Review

Klein Gebbink, R.J.M.

Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications 2018, 171-197, 10.1002/9783527804085.ch6

The development of artificial hydrogenases (AHases) and transfer hydrogenases (ATHases) has played a leading and guiding role for the field of artificial metalloenzymes. Starting from the early studies by Whitesides and coworkers, this chapter showcases the conceptual development of AHases and ATHases, highlighting the different conjugation strategies used for their construction and exemplifying the stereoselective control in product formation that can be reached.


Notes: Book chapter

Artificial Metalloenzymes in Asymmetric Catalysis: Key Developments and Future Directions

Review

Bäckvall, J.E.; Diéguez, M.; Pàmies, O.

Adv. Synth. Catal. 2015, 357, 1567-1586, 10.1002/adsc.201500290

Artificial metalloenzymes combine the excellent selective recognition/binding properties of enzymes with transition metal catalysts, and therefore many asymmetric transformations can benefit from these entities. The search for new successful strategies in the construction of metal‐enzyme hybrid catalysts has therefore become a very active area of research. This review discusses all the developed strategies and the latest advances in the synthesis and application in asymmetric catalysis of artificial metalloenzymes with future directions for their design, synthesis and application (Sections 2–4). Finally, advice is presented (to the non‐specialist) on how to prepare and use artificial metalloenzymes (Section 5).


Notes: ---

Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism

Review

Jeschek, M.

Trends Biotechnol. 2018, 36, 60-72, 10.1016/j.tibtech.2017.10.003

Residing at the interface of chemistry and biotechnology, artificial metalloenzymes (ArMs) offer an attractive technology to combine the versatile reaction repertoire of transition metal catalysts with the exquisite catalytic features of enzymes. While earlier efforts in this field predominantly comprised studies in well-defined test-tube environments, a trend towards exploiting ArMs in more complex environments has recently emerged. Integration of these artificial biocatalysts in enzymatic cascades and using them in whole-cell biotransformations and in vivo opens up entirely novel prospects for both preparative chemistry and synthetic biology. We highlight selected recent developments with a particular focus on challenges and opportunities in the in vivo application of ArMs.


Notes: ---

Artificial Metalloenzymes: Proteins as Hosts for Enantioselective Catalysis

Review

Ward, T.R.

Chem. Soc. Rev. 2005, 34, 337, 10.1039/b314695m

Enantioselective catalysis is one of the most efficient ways to synthesize high-added-value enantiomerically pure organic compounds. As the subtle details which govern enantioselection cannot be reliably predicted or computed, catalysis relies more and more on a combinatorial approach. Biocatalysis offers an attractive, and often complementary, alternative for the synthesis of enantiopure products. From a combinatorial perspective, the potential of directed evolution techniques in optimizing an enzyme's selectivity is unrivaled. In this review, attention is focused on the construction of artificial metalloenzymes for enantioselective catalytic applications. Such systems are shown to combine properties of both homogeneous and enzymatic kingdoms. This review also includes our recent research results and implications in the development of new semisynthetic metalloproteins for the enantioselective hydrogenation of N-protected dehydro-amino acids.


Notes: ---