3 publications

3 publications

Binding of Vanadium Ions and Complexes to Proteins and Enzymes in Aqueous Solution

Review

Garribba, E.

Coord. Chem. Rev. 2021, 449, 214192, 10.1016/j.ccr.2021.214192

The understanding of the role of vanadium enzymes and of vanadium compounds (VCs) in biology, as well as the design of new vanadium-based species for catalysis, materials science and medicinal chemistry has exponentially increased during the last decades. In biological systems, VCs may rapidly interconvert under physiological conditions and several V-containing moieties may be formed and bind to proteins. These interactions play key roles in the form transported in blood, in the uptake by cells, in inhibition properties and mechanism of action of essential and pharmacologically active V species. In this review, we focus on the recent advances made, namely in the application of the theoretical methodologies that allowed the description of the coordinative and non-covalent VC–protein interactions. The text is organized in six main topics: a general overview of the most important experimental and computational techniques useful to study these systems, a discussion on the nature of binding process, the recent advances on the comprehension of the V-containing natural and artificial enzymes, the interaction of mononuclear VCs with blood and other physiologically relevant proteins, the binding of polyoxidovanadates(V) to proteins and, finally, the biological and therapeutic implications of the interaction of pharmacologically relevant VCs with proteins and enzymes. Recent developments on vanadium-containing nitrogenases, haloperoxidases and nitrate reductases, and binding of VCs to transferrin, albumins, immunoglobulins, hemoglobin, lysozyme, myoglobin, ubiquitin and cytochrome c are discussed. Challenges and ideas about desirable features and potential drawbacks of VCs in biology and medicine and future directions to explore this chemistry area are also presented. The deeper understanding of the interactions of V-species with proteins, and the discussed data may provide the basis to undertake the investigation, design and development of new potentially active VCs with a more solid knowledge to predict their binding to biological receptors at a molecular point of view.


Notes: ---

Preparation of an Immobilized Lipase-Palladium Artificial Metalloenzyme as Catalyst in the Heck Reaction: Role of the Solid Phase

Filice, M.; Palomo, J.M.

Adv. Synth. Catal. 2015, 357, 2687-2696, 10.1002/adsc.201500014

A p‐nitrophenylphosphonate palladium pincer was synthesized and selectively inserted by irreversible attachment on the catalytic serine of different commercial lipases with good to excellent yields in most cases. Among all, lipase from Candida antarctica B (CAL‐B) was the best modified enzyme. The artificial metalloenzyme CAL‐B‐palladium (Pd) catalyst was subsequently immobilized on different supports and by different orienting strategies. The catalytic properties of the immobilized hybrid catalysts were then evaluated in two sets of Heck cross‐coupling reactions under different conditions. In the first reaction between iodobenzene and ethyl acrylate, the covalent immobilized CAL‐B‐Pd catalyst resulted to be the best one exhibiting quantitative production of the Heck product at 70 °C in dimethylformamide (DMF) with 25% water and particularly in pure DMF, where the soluble Pd pincer was completely inactive. A post‐immobilization engineering of catalyst surface by its hydrophobization enhanced the activity. The selectivity properties of the best hybrid catalyst were then assessed in the asymmetric Heck cross‐coupling reaction between iodobenzene and 2,3‐dihydrofuran retrieving excellent results in terms of stereo‐ and enantioselectivity.


Metal: Pd
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Max TON: ~4160
ee: 96
PDB: ---
Notes: ArM is immobilized on Sepabeads.

Synthesis of a Heterogeneous Artificial Metallolipase with Chimeric Catalytic Activity

Filice, M.

Chem. Commun. 2015, 51, 9324-9327, 10.1039/C5CC02450A

A solid-phase strategy using lipase as a biomolecular scaffold to produce a large amount of Cu2+-metalloenzyme is proposed here. The application of this protocol on different 3D cavities of the enzyme allows creating a heterogeneous artificial metallolipase showing chimeric catalytic activity. The artificial catalyst was assessed in Diels–Alder cycloaddition reactions and cascade reactions showing excellent catalytic properties.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 411
ee: 92
PDB: ---
Notes: ArM is immobilized on Sepabeads. Endo/exo = 93.5%

Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Reduction
Max TON: ---
ee: ---
PDB: ---
Notes: Cascade reaction: Ester hydrolysis (natural function of the host protein) followed by reduction (function of the designed ArM).