8 publications

8 publications

Aqueous Phase Transfer Hydrogenation of Aryl Ketones Catalysed by Achiral Ruthenium(II) and Rhodium(III) Complexes and their Papain Conjugates

Salmain, M.

Appl. Organomet. Chem., 2013, 10.1002/aoc.2929


Metal: Rh
Ligand type: Cp*; Poly-pyridine
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Hydrogenation
Max TON: 96
ee: 15
PDB: ---
Notes: ---

Autoxidation of Ascorbic Acid Catalyzed by a Semisynthetic Enzyme

Kaiser, E. T.

Biopolymers, 1990, 10.1002/bip.360290107


Metal: Cu
Ligand type: Bipyridine
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Chemically Engineered Papain as Artificial Formate Dehydrogenase for NAD(P)H Regeneration

Salmain, M.

Org. Biomol. Chem., 2011, 10.1039/c1ob05482a


Metal: Rh
Ligand type: Cp*; Poly-pyridine
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Hydrogenation
Max TON: ---
ee: ---
PDB: ---
Notes: TOF = 52.1 h-1 for NAD+

Merging Homogeneous Catalysis with Biocatalysis; Papain as Hydrogenation Catalyst

de Vries, J.

Chem. Commun., 2005, 10.1039/B512138H


Metal: Rh
Ligand type: Phosphine
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Hydrogenation
Max TON: 400
ee: <10
PDB: ---
Notes: ---

Metal-Conjugated Affinity Labels: A New Concept to Create Enantioselective Artificial Metalloenzymes

Eppinger, J.

ChemistryOpen, 2013, 10.1002/open.201200044


Metal: Rh
Ligand type: Cp*; Phosphine
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Hydrogenation
Max TON: 89
ee: 64
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Benzene; Phosphine
Host protein: Bromelain
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Hydrogenation
Max TON: 44
ee: 20
PDB: ---
Notes: ---

Piano-Stool d(6)-Rhodium(III) Complexes of Chelating Pyridine-Based Ligands and their Papain Bioconjugates for the Catalysis of Transfer Hydrogenation of Aryl Ketones in Aqueous Medium

Mangiatordi, G. F.; Salmain, M.

J. Mol. Catal. B: Enzym., 2015, 10.1016/j.molcatb.2015.10.007


Metal: Rh
Ligand type: Cp*; Phenanthroline
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Max TON: 30
ee: 9
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Cp*; Di(2-pyridyl)
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Max TON: 20
ee: 5
PDB: ---
Notes: ---

Towards the Directed Evolution of Hybrid Catalysts

Reetz, M. T.

Chimia, 2002, 10.2533/000942902777679920


Metal: Mn
Ligand type: Salen
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Epoxidation
Max TON: ---
ee: < 10
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Dipyridin-2-ylmethane
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Hydrogenation
Max TON: ---
ee: < 10
PDB: ---
Notes: ---

(η6-Arene) Ruthenium(II) Complexes and Metallo-Papain Hybrid as Lewis Acid Catalysts of Diels–Alder Reaction in Water

Salmain, M.

Dalton Trans., 2010, 10.1039/c001630f

Covalent embedding of a (η6-arene) ruthenium(II) complex into the protein papain gives rise to a metalloenzyme displaying a catalytic efficiency for a Lewis acid-mediated catalysed Diels–Alder reaction enhanced by two orders of magnitude in water.


Metal: Ru
Ligand type: Benzene; Phenanthroline
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Max TON: 440
ee: ---
PDB: ---
Notes: TOF = 220 h-1