70 publications

70 publications

A "Broad Spectrum" Carbene Transferase for Synthesis of Chiral α-Trifluoromethylated Organoborons

Roelfes, G.

ACS Cent. Sci. 2019, 5, 206-208, 10.1021/acscentsci.9b00015

Directed evolution generated an enzyme for the enantioselective synthesis of α-trifluoromethylated organoborons—potentially attractive synthons for fluorinated compounds.


Metal: Fe
Ligand type: Porphyrin
Host protein: Cytochrome c
Anchoring strategy: Native
Optimization: Genetic
Reaction: B-H insertion
Max TON: 2900
ee: 95
PDB: ---
Notes: ---

A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell

Fussenegger, M.; Matile, S.; Ward, T.R.

Nat. Commun. 2018, 9, 10.1038/s41467-018-04440-0

Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.


Metal: Ru
Ligand type: Cp; Quinoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Deallylation
Max TON: 33
ee: ---
PDB: ---
Notes: ---

A Cofactor Approach to Copper-Dependent Catalytic Antibodies

Janda, K.D.; Nicholas, K.M.

Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 2648-2653, 10.1073/pnas.052001099

A strategy for the preparation of semisynthetic copper(II)-based catalytic metalloproteins is described in which a metal-binding bis-imidazole cofactor is incorporated into the combining site of the aldolase antibody 38C2. Antibody 38C2 features a large hydrophobic-combining site pocket with a highly nucleophilic lysine residue, LysH93, that can be covalently modified. A comparison of several lactone and anhydride reagents shows that the latter are the most effective and general derivatizing agents for the 38C2 Lys residue. A bis-imidazole anhydride (5) was efficiently prepared from N-methyl imidazole. The 38C2–5-Cu conjugate was prepared by either (i) initial derivatization of 38C2 with 5 followed by metallation with CuCl2, or (ii) precoordination of 5 with CuCl2 followed by conjugation with 38C2. The resulting 38C2–5-Cu conjugate was an active catalyst for the hydrolysis of the coordinating picolinate ester 11, following Michaelis–Menten kinetics [kcat(11) = 2.3 min−1 and Km(11) 2.2 mM] with a rate enhancement [kcat(11)kuncat(11)] of 2.1 × 105. Comparison of the second-order rate constants of the modified 38C2 and the Cu(II)-bis-imidazolyl complex k(6-CuCl2) gives a rate enhancement of 3.5 × 104 in favor of the antibody complex with an effective molarity of 76.7 M, revealing a significant catalytic benefit to the binding of the bis-imidazolyl ligand into 38C2.


Metal: Cu
Ligand type: Bisimidazol
Host protein: Antibody 38C2
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: ---
ee: ---
PDB: ---
Notes: ---

A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme

Lu, Y.; Wang, J.

J. Am. Chem. Soc. 2015, 137, 11570-11573, 10.1021/jacs.5b07119

Terminal oxidases catalyze four-electron reduction of oxygen to water, and the energy harvested is utilized to drive the synthesis of adenosine triphosphate. While much effort has been made to design a catalyst mimicking the function of terminal oxidases, most biomimetic catalysts have much lower activity than native oxidases. Herein we report a designed oxidase in myoglobin with an O2 reduction rate (52 s–1) comparable to that of a native cytochrome (cyt) cbb3 oxidase (50 s–1) under identical conditions. We achieved this goal by engineering more favorable electrostatic interactions between a functional oxidase model designed in sperm whale myoglobin and its native redox partner, cyt b5, resulting in a 400-fold electron transfer (ET) rate enhancement. Achieving high activity equivalent to that of native enzymes in a designed metalloenzyme offers deeper insight into the roles of tunable processes such as ET in oxidase activity and enzymatic function and may extend into applications such as more efficient oxygen reduction reaction catalysts for biofuel cells.


Metal: Cu
Ligand type: Amino acid
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Genetic
Reaction: O2 reduction
Max TON: ---
ee: ---
PDB: ---
Notes: O2 reduction rates of 52 s-1 were achieved in combination with the native redox partner cyt b5.

A Designed Supramolecular Protein Assembly with In Vivo Enzymatic Activity

Tezcan, F.A.

Science 2014, 346, 1525-1528, 10.1126/science.1259680

The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(kcat/Km)/kuncat] for ampicillin hydrolysis of 2.3 × 106 and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.


Metal: Zn
Ligand type: Amino acid
Host protein: Cytochrome cb562
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 4U9E
Notes: ---

A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology

Ward, T.R.

J. Am. Chem. Soc. 2013, 135, 5384-5388, 10.1021/ja309974s

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.


Metal: Ir
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 14
ee: 11
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 100
ee: 79
PDB: ---
Notes: ---

Alteration of the Oxygen-Dependent Reactivity of De Novo Due Ferri Proteins

DeGrado, W.F.

Nat. Chem. 2012, 4, 900-906, 10.1038/NCHEM.1454

De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N-hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 106-fold increase in the relative rate between the arylamine N-hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites.


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferri
Anchoring strategy: Dative
Optimization: Genetic
Reaction: N-Hydroxylation
Max TON: ---
ee: ---
PDB: 2LFD
Notes: ---

A Metal Ion Regulated Artificial Metalloenzyme

Roelfes, G.

Dalton Trans. 2017, 46, 4325-4330, 10.1039/C7DT00533D

An artificial metalloenzyme containing both a regulatory and a catalytic domain is selectively activated in presence of Fe2+ ions.


Metal: Fe
Ligand type: Bypyridine
Host protein: LmrR
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 14
ee: 75
PDB: ---
Notes: ---

Metal: Zn
Ligand type: Bypyridine
Host protein: LmrR
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 6
ee: 80
PDB: ---
Notes: ---

An Artificial Di-Iron Oxo-Orotein with Phenol Oxidase Activity

DeGrado, W.F.; Lombardi, A.

Nat. Chem. Biol. 2009, 5, 882-884, 10.1038/nchembio.257

Here we report the de novo design and NMR structure of a four-helical bundle di-iron protein with phenol oxidase activity. The introduction of the cofactor-binding and phenol-binding sites required the incorporation of residues that were detrimental to the free energy of folding of the protein. Sufficient stability was, however, obtained by optimizing the sequence of a loop distant from the active site.


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferri
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Alcohol oxidation
Max TON: >50
ee: ---
PDB: 2KIK
Notes: kcat/KM ≈ 1380 M-1*min-1

Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferri
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Amine oxidation
Max TON: ---
ee: ---
PDB: 2KIK
Notes: kcat/KM ≈ 83 M-1*min-1

An Artificial Imine Reductase Based on the Ribonuclease S Scaffold

Ward, T.R.

ChemCatChem 2014, 6, 736-740, 10.1002/cctc.201300995

Dative anchoring of a piano‐stool complex within ribonuclease S resulted in an artificial imine reductase. The catalytic performance was modulated upon variation of the coordinating amino acid residues in the S‐peptide. Binding of Cp*Ir (Cp*=C5Me5) to the native active site resulted in good conversions and moderate enantiomeric excess values for the synthesis of salsolidine.


Metal: Ir
Ligand type: Amino acid; Cp*
Host protein: Ribonuclease S
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 4
ee: 18
PDB: ---
Notes: ---

An Artificial Metalloenzyme: Creation of a Designed Copper Binding Site in a Thermostable Protein

Reetz, M.T.

Angew. Chem. Int. Ed. 2010, 49, 5151-5155, 10.1002/anie.201002106

Guided by nature: A designed binding site comprising the His/His/Asp motif for CuII complexation has been constructed in a robust protein by site‐specific mutagenesis (see picture). The artificial metalloenzyme catalyzes an enantioselective Diels–Alder reaction.


Metal: Cu
Ligand type: Amino acid
Host protein: tHisF
Anchoring strategy: Dative
Optimization: Genetic
Max TON: 6.7
ee: 46
PDB: ---
Notes: ---

An Enantioselective Artificial Metallo-Hydratase

Roelfes, G.

Chem. Sci. 2013, 4, 3578, 10.1039/c3sc51449h

Direct addition of water to alkenes to generate important chiral alcohols as key motif in a variety of natural products still remains a challenge in organic chemistry. Here, we report the first enantioselective artificial metallo-hydratase, based on the transcription factor LmrR, which catalyses the conjugate addition of water to generate chiral β-hydroxy ketones with enantioselectivities up to 84% ee. A mutagenesis study revealed that an aspartic acid and a phenylalanine located in the active site play a key role in achieving efficient catalysis and high enantioselectivities.


Metal: Cu
Ligand type: Phenanthroline
Host protein: LmrR
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 30
ee: 84
PDB: 3F8B
Notes: ---

Artificial Dicopper Oxidase: Rational Reprogramming of Bacterial Metallo- b-lactamase into a Catechol Oxidase

Fujieda, N.; Itoh, S.

Chem. - Asian J. 2012, 7, 1203-1207, 10.1002/asia.201101014

Teaching metalloenzymes new tricks: An artificial type III dicopper oxidase has been developed using a hydrolytic enzyme, metallo‐β‐lactamase, as a metal‐binding platform. The triple mutant D88G/S185H/P224G redesigned by computer‐assisted structural analysis showed spectroscopic features similar to those of type III copper proteins and exhibited a high catalytic activity in the oxidation of catechols under aerobic conditions.


Metal: Cu
Ligand type: Amino acid
Host protein: β-lactamase
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Catechol oxidation
Max TON: ---
ee: ---
PDB: 2FU7
Notes: ---

Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin

Ward, T.R.

J. Am. Chem. Soc. 2008, 130, 8085-8088, 10.1021/ja8017219

Nature’s catalysts are specifically evolved to carry out efficient and selective reactions. Recent developments in biotechnology have allowed the rapid optimization of existing enzymes for enantioselective processes. However, the ex nihilo creation of catalytic activity from a noncatalytic protein scaffold remains very challenging. Herein, we describe the creation of an artificial enzyme upon incorporation of a vanadyl ion into the biotin-binding pocket of streptavidin, a protein devoid of catalytic activity. The resulting artificial metalloenzyme catalyzes the enantioselective oxidation of prochiral sulfides with good enantioselectivities both for dialkyl and alkyl-aryl substrates (up to 93% enantiomeric excess). Electron paragmagnetic resonance spectroscopy, chemical modification, and mutagenesis studies suggest that the vanadyl ion is located within the biotin-binding pocket and interacts only via second coordination sphere contacts with streptavidin.


Metal: V
Ligand type: Water
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: 27
ee: 93
PDB: ---
Notes: ---

Artificial Metalloenzymes based on Protein Cavities: Exploring the Effect of Altering the Metal Ligand Attachment Position by Site Directed Mutagenesis

Distefano, M.D.

Bioorg. Med. Chem. Lett. 1999, 9, 79-84, 10.1016/S0960-894X(98)00684-2

In an effort to construct catalysts with enzyme-like properties, we are employing a small, cavity-containing protein as a scaffold for the attachment of catalytic groups. In earlier work we demonstrated that a phenanthroline ligand could be introduced into the cavity of the protein ALBP and used to catalyze ester hydrolysis. To examine the effect of positioning the phenanthroline catalyst at different locations wthin the protein cavity, three new constucts — Phen60, Phen72 and Phen104 — were prepared. Each new conjugate was characterized by UV/vis spectroscopy, fluorescence spectroscopy, guanidine hydrochloride denaturation, gel filtration chromatography, and CD spectroscopy to confirm the preparation of the desired contruct. Analysis of reactions containing Ala-OiPr showed that Phen60 catalyzed ester hydrolysis with less selectivity than ALBP-Phen while Phen72 promoted this same reaction with higher selectivity. Reactions with Tyr-OMe were catalyzed with higher selectivity by Phen60 and more rapidly by Phen104. These results demonstrate that both the rates and selectivities of hydrolysis reactions catalyzed by these constructs are dependent on the precise site of attachment of the metal ligand within the protein cavity.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 1 to 4
ee: 61 to 94
PDB: ---
Notes: Varied attachment position

A Site-Selective Dual Anchoring Strategy for Artificial Metalloprotein Design

Lu, Y.

J. Am. Chem. Soc. 2004, 126, 10812-10813, 10.1021/ja046908x

Introducing nonnative metal ions or metal-containing prosthetic groups into a protein can dramatically expand the repertoire of its functionalities and thus its range of applications. Particularly challenging is the control of substrate-binding and thus reaction selectivity such as enantioselectivity. To meet this challenge, both non-covalent and single-point attachments of metal complexes have been demonstrated previously. Since the protein template did not evolve to bind artificial metal complexes tightly in a single conformation, efforts to restrict conformational freedom by modifying the metal complexes and/or the protein are required to achieve high enantioselectivity using the above two strategies. Here we report a novel site-selective dual anchoring (two-point covalent attachment) strategy to introduce an achiral manganese salen complex (Mn(salen)), into apo sperm whale myoglobin (Mb) with bioconjugation yield close to 100%. The enantioselective excess increases from 0.3% for non-covalent, to 12.3% for single point, and to 51.3% for dual anchoring attachments. The dual anchoring method has the advantage of restricting the conformational freedom of the metal complex in the protein and can be generally applied to protein incorporation of other metal complexes with minimal structural modification to either the metal complex or the protein.


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: 3.9
ee: 51
PDB: 1MBO
Notes: Sperm whale myoglobin

Atroposelective Antibodies as a Designed Protein Scaffold for Artificial Metalloenzymes

Harada, A.; Yamaguchi, H.

Sci. Rep. 2019, 9, 10.1038/s41598-019-49844-0

Design and engineering of protein scaffolds are crucial to create artificial metalloenzymes. Herein we report the first example of C-C bond formation catalyzed by artificial metalloenzymes, which consist of monoclonal antibodies (mAbs) and C2 symmetric metal catalysts. Prepared as a tailored protein scaffold for a binaphthyl derivative (BN), mAbs bind metal catalysts bearing a 1,1?-bi-isoquinoline (BIQ) ligand to yield artificial metalloenzymes. These artificial metalloenzymes catalyze the Friedel-Crafts alkylation reaction. In the presence of mAb R44E1, the reaction proceeds with 88% ee. The reaction catalyzed by Cu-catalyst incorporated into the binding site of mAb R44E1 is found to show excellent enantioselectivity with 99% ee. The protein environment also enables the use of BIQ-based catalysts as asymmetric catalysts for the first time.


Metal: Cu; Pd; Pt
Ligand type: Bipyridine
Host protein: Antibody
Anchoring strategy: Antigen
Optimization: Genetic
Max TON: 2
ee: 88
PDB: ---
Notes: ---

A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase

Fujieda, N.; Itoh, S.

J. Am. Chem. Soc. 2017, 139, 5149-5155, 10.1021/jacs.7b00675

Thermally stable TM1459 cupin superfamily protein from Thermotoga maritima was repurposed as an osmium (Os) peroxygenase by metal-substitution strategy employing the metal-binding promiscuity. This novel artificial metalloenzyme bears a datively bound Os ion supported by the 4-histidine motif. The well-defined Os center is responsible for not only the catalytic activity but also the thermodynamic stability of the protein folding, leading to the robust biocatalyst (Tm ≈ 120 °C). The spectroscopic analysis and atomic resolution X-ray crystal structures of Os-bound TM1459 revealed two types of donor sets to Os center with octahedral coordination geometry. One includes trans-dioxide, OH, and mer-three histidine imidazoles (O3N3 donor set), whereas another one has four histidine imidazoles plus OH and water molecule in a cis position (O2N4 donor set). The Os-bound TM1459 having the latter donor set (O2N4 donor set) was evaluated as a peroxygenase, which was able to catalyze cis-dihydroxylation of several alkenes efficiently. With the low catalyst loading (0.01% mol), up to 9100 turnover number was achieved for the dihydroxylation of 2-methoxy-6-vinyl-naphthalene (50 mM) using an equivalent of H2O2 as oxidant at 70 °C for 12 h. When octene isomers were dihydroxylated in a preparative scale for 5 h (2% mol cat.), the terminal alkene octene isomers was converted to the corresponding diols in a higher yield as compared with the internal alkenes. The result indicates that the protein scaffold can control the regioselectivity by the steric hindrance. This protein scaffold enhances the efficiency of the reaction by suppressing disproportionation of H2O2 on Os reaction center. Moreover, upon a simple site-directed mutagenesis, the catalytic activity was enhanced by about 3-fold, indicating that Os-TM1459 is evolvable nascent osmium peroxygenase.


Metal: Os
Ligand type: Amino acid
Host protein: TM1459 cupin
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: Dihydroxylation
Max TON: 45
ee: ---
PDB: 5WSE
Notes: Exclusively cis dihydroxylation product obtained

Metal: Os
Ligand type: Amino acid
Host protein: TM1459 cupin
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: Dihydroxylation
Max TON: 45
ee: ---
PDB: 5WSF
Notes: Exclusively cis dihydroxylation product obtained

Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation

Rovis, T.; Ward, T.R.

Science 2012, 338, 500-503, 10.1126/science.1226132

Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C–H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.


Metal: Rh
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: C-H activation
Max TON: 95
ee: 82
PDB: ---
Notes: ---

Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes

Ward, T.R.

J. Am. Chem. Soc. 2019, 141, 15869-15878, 10.1021/jacs.9b06923

The biotin–streptavidin technology has been extensively exploited to engineer artificial metalloenzymes (ArMs) that catalyze a dozen different reactions. Despite its versatility, the homotetrameric nature of streptavidin (Sav) and the noncooperative binding of biotinylated cofactors impose two limitations on the genetic optimization of ArMs: (i) point mutations are reflected in all four subunits of Sav, and (ii) the noncooperative binding of biotinylated cofactors to Sav may lead to an erosion in the catalytic performance, depending on the cofactor:biotin-binding site ratio. To address these challenges, we report on our efforts to engineer a (monovalent) single-chain dimeric streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility of scdSav as host protein is highlighted for the asymmetric transfer hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning of the biotin-binding vestibule, unrivaled levels of activity and selectivity were achieved for the reduction of challenging prochiral imines. Comparison of the saturation kinetic data and X-ray structures of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav highlights the advantages of the presence of a single biotinylated cofactor precisely localized within the biotin-binding vestibule of the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated for the reduction of the salsolidine precursor (500 mM) to afford (R)-salsolidine in 90% ee and >17 000 TONs. Monovalent scdSav thus provides a versatile scaffold to evolve more efficient ArMs for in vivo catalysis and large-scale applications.


Metal: Ir
Ligand type: Cp*; Phenanthroline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 17000
ee: 98
PDB: 6S4Q
Notes: Additional PDB: 6S50

Capture and Characterization of a Reactive Haem– Carbenoid Complex in an Artificial Metalloenzyme

Hilvert, D.

Nat. Catal. 2018, 1, 578-584, 10.1038/s41929-018-0105-6

Non-canonical amino acid ligands are useful for fine-tuning the catalytic properties of metalloenzymes. Here, we show that recombinant replacement of the histidine ligand proximal to haem in myoglobin with Nδ-methylhistidine enhances the protein’s promiscuous carbene-transfer chemistry, enabling efficient styrene cyclopropanation in the absence of reductant, even under aerobic conditions. The increased electrophilicity of the modified Fe(iii) centre, combined with subtle structural adjustments at the active site, allows direct attack of ethyl diazoacetate to produce a reactive carbenoid adduct, which has an unusual bridging Fe(iii)–C–N(pyrrole) configuration as shown by X-ray crystallography. Quantum chemical calculations suggest that the bridged complex equilibrates with the more reactive end-on isomer, ensuring efficient cyclopropanation. These findings underscore the potential of non-canonical ligands for extending the capabilities of metalloenzymes by opening up new reaction pathways and facilitating the characterization of reactive species that would not otherwise accumulate.


Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: ---
Optimization: Genetic
Reaction: Cyclopropanation
Max TON: 1000
ee: 99
PDB: 6F17
Notes: Structure of the Mb*(NMH) haem-iron complex

Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: ---
Optimization: Genetic
Reaction: Cyclopropanation
Max TON: 1000
ee: 99
PDB: 6G5B
Notes: Structure of the Mb*(NMH) haem-iron–carbenoid complex

Catalytic Reduction of NO to N2O by a Designed Heme Copper Center in Myoglobin: Implications for the Role of Metal Ions

Lu, Y.

J. Am. Chem. Soc. 2006, 128, 6766-6767, 10.1021/ja058822p

The effects of metal ions on the reduction of nitric oxide (NO) with a designed heme copper center in myoglobin (F43H/L29H sperm whale Mb, CuBMb) were investigated under reducing anaerobic conditions using UV−vis and EPR spectroscopic techniques as well as GC/MS. In the presence of Cu(I), catalytic reduction of NO to N2O by CuBMb was observed with turnover number of 2 mol NO·mol CuBMb-1·min-1, close to 3 mol NO·mol enzyme-1·min-1 reported for the ba3 oxidases from T. thermophilus. Formation of a His-heme-NO species was detected by UV−vis and EPR spectroscopy. In comparison to the EPR spectra of ferrous-CuBMb-NO in the absence of metal ions, the EPR spectra of ferrous-CuBMb-NO in the presence of Cu(I) showed less-resolved hyperfine splitting from the proximal histidine, probably due to weakening of the proximal His-heme bond. In the presence of Zn(II), formation of a five-coordinate ferrous-CuBMb-NO species, resulting from cleavage of the proximal heme Fe-His bond, was shown by UV−vis and EPR spectroscopic studies. The reduction of NO to N2O was not observed in the presence of Zn(II). Control experiments using wild-type myoglobin indicated no reduction of NO in the presence of either Cu(I) or Zn(II). These results suggest that both the identity and the oxidation state of the metal ion in the CuB center are important for NO reduction. A redox-active metal ion is required to deliver electrons, and a higher oxidation state is preferred to weaken the heme iron−proximal histidine toward a five-coordinate key intermediate in NO reduction.


Metal: Cu
Ligand type: Amino acid; Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Genetic
Max TON: 2400
ee: ---
PDB: ---
Notes: Sperm whale myoglobin

Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes

Ward, T.R.; Woolfson, D.N.

ACS Catal. 2018, 8, 1476-1484, 10.1021/acscatal.7b03773

The streptavidin scaffold was expanded with well-structured naturally occurring motifs. These chimeric scaffolds were tested as hosts for biotinylated catalysts as artificial metalloenzymes (ArM) for asymmetric transfer hydrogenation, ring-closing metathesis and anion−π catalysis. The additional second coordination sphere elements significantly influence both the activity and the selectivity of the resulting hybrid catalysts. These findings lead to the identification of propitious chimeric streptavidins for future directed evolution efforts of artificial metalloenzymes.


Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 970
ee: 13
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 158
ee: 82
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Olefin metathesis
Max TON: 105
ee: ---
PDB: ---
Notes: RCM, biotinylated Hoveyda-Grubbs second generation catalyst

Metal: ---
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Anion-π catalysis
Max TON: 6
ee: 41
PDB: ---
Notes: No metal

Computational Insights on an Artificial Imine Reductase Based on the Biotin-Streptavidin Technology

Maréchal, J.-D.

ACS Catal. 2014, 4, 833-842, 10.1021/cs400921n

We present a computational study that combines protein–ligand docking, quantum mechanical, and quantum mechanical/molecular mechanical calculations to scrutinize the mechanistic behavior of the first artificial enzyme able to enantioselectively reduce cyclic imines. We applied a novel strategy that allows the characterization of transition state structures in the protein host and their associated reaction paths. Of the most striking results of our investigation is the identification of major conformational differences between the transition state geometries of the lowest energy paths leading to (R)- and (S)-reduction products. The molecular features of (R)- and (S)-transition states highlight distinctive patterns of hydrophobic and polar complementarities between the substrate and the binding site. These differences lead to an activation energy gap that stands in very good agreement with the experimentally determined enantioselectivity. This study sheds light on the mechanism by which transfer hydrogenases operate and illustrates how the change of environment (from homogeneous solution conditions to the asymmetric protein frame) affect the reactivity of the organometallic cofactor. It provides novel insights on the complexity in integrating unnatural organometallic compounds into biological scaffolds. The modeling strategy that we pursued, based on the generation of “pseudo transition state” structures, is computationally efficient and suitable for the discovery and optimization of artificial enzymes. Alternatively, this approach can be applied on systems for which a large conformational sampling is needed to identify relevant transition states.


Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: ---
ee: 96
PDB: 3PK2
Notes: Prediction of the enantioselectivity by computational methods.

Computational Redesign of a Mononuclear Zinc Metalloenzyme for Organophosphate Hydrolysis

Baker, D.

Nat. Chem. Biol. 2012, 8, 294-300, 10.1038/NChemBio.777

The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency (kcat/Km) of ∼104 M−1 s−1 after directed evolution. In the high-resolution crystal structure of the enzyme, all but one of the designed residues adopt the designed conformation. The designed enzyme efficiently catalyzes the hydrolysis of the RP isomer of a coumarinyl analog of the nerve agent cyclosarin, and it shows marked substrate selectivity for coumarinyl leaving groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a general approach for exploring their untapped catalytic potential for new reactivities.


Metal: Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Max TON: >140
ee: ---
PDB: 3T1G
Notes: kcat/KM ≈ 104 M-1*s-1

Construction and In Vivo Assembly of a Catalytically Proficient and Hyperthermostable De Novo Enzyme

Anderson, J.L.R.

Nat. Commun. 2017, 8, 10.1038/s41467-017-00541-4

Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.


Metal: Fe
Ligand type: Porphyrin
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Oxidation of 2,2′-azino-bis(3-ethylbenzothiazo-line-6-sulfonic acid (ABTS)

Definite Coordination Arrangement of Organometallic Palladium Complexes Accumulated on the Designed Interior Surface of Apo-Ferritin

Ueno, T.

Chem. Commun. 2011, 47, 170-172, 10.1039/C0CC02221G

Apo-ferritin (apo-Fr) mutants are used as scaffolds to accommodate palladium (allyl) complexes. Various coordination arrangements of the Pd complexes are achieved by adjusting the positions of cysteine and histidine residues on the interior surface of the apo-Fr cage.


Metal: Pd
Ligand type: Allyl
Host protein: Ferritin
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Suzuki coupling
Max TON: ---
ee: ---
PDB: ---
Notes: ---

De Novo Design of Catalytic Proteins

DeGrado, W.F.

Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 11566-11570, 10.1073/pnas.0404387101

The de novo design of catalytic proteins provides a stringent test of our understanding of enzyme function, while simultaneously laying the groundwork for the design of novel catalysts. Here we describe the design of an O2-dependent phenol oxidase whose structure, sequence, and activity are designed from first principles. The protein catalyzes the two-electron oxidation of 4-aminophenol (k cat/K M = 1,500 M·1·min·1) to the corresponding quinone monoimine by using a diiron cofactor. The catalytic efficiency is sensitive to changes of the size of a methyl group in the protein, illustrating the specificity of the design.


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferri
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Alcohol oxidation
Max TON: >100
ee: ---
PDB: ---
Notes: kcat/KM ≈ 1540 M-1*min-1

Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold

Kim, H.S.

Science 2006, 311, 535-538, 10.1126/science.1118953

The design of enzymes with new functions and properties has long been a goal in protein engineering. Here, we report a strategy to change the catalytic activity of an existing protein scaffold. This was achieved by simultaneous incorporation and adjustment of functional elements through insertion, deletion, and substitution of several active site loops, followed by point mutations to fine-tune the activity. Using this approach, we were able to introduce β-lactamase activity into the αβ/βα metallohydrolase scaffold of glyoxalase II. The resulting enzyme, evMBL8 (evolved metallo β-lactamase 8), completely lost its original activity and, instead, catalyzed the hydrolysis of cefotaxime with a (kcat /Km)app of 1.8 × 102 (mole/liter)–1 second–1, thus increasing resistance to Escherichia coli growth on cefotaxime by a factor of about 100.


Metal: Zn
Ligand type: Amino acid
Host protein: Glyoxalase II (Human)
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 2F50
Notes: kcat/KM ≈ 184 M-1*s-1

Design of an Enantioselective Artificial Metallo-Hydratase Enzyme Containing an Unnatural Metal-Binding Amino Acid

Maréchal, J.-D.; Roelfes, G.

Chem. Sci. 2017, 8, 7228-7235, 10.1039/C7SC03477F

The design of artificial metalloenzymes is a challenging, yet ultimately highly rewarding objective because of the potential for accessing new-to-nature reactions. One of the main challenges is identifying catalytically active substrate–metal cofactor–host geometries. The advent of expanded genetic code methods for the in vivo incorporation of non-canonical metal-binding amino acids into proteins allow to address an important aspect of this challenge: the creation of a stable, well-defined metal-binding site. Here, we report a designed artificial metallohydratase, based on the transcriptional repressor lactococcal multidrug resistance regulator (LmrR), in which the non-canonical amino acid (2,2′-bipyridin-5yl)alanine is used to bind the catalytic Cu(II) ion. Starting from a set of empirical pre-conditions, a combination of cluster model calculations (QM), protein–ligand docking and molecular dynamics simulations was used to propose metallohydratase variants, that were experimentally verified. The agreement observed between the computationally predicted and experimentally observed catalysis results demonstrates the power of the artificial metalloenzyme design approach presented here.


Metal: Cu
Ligand type: Bipyridine
Host protein: LmrR
Anchoring strategy: ---
Optimization: Genetic
Reaction: Hydration
Max TON: 9
ee: 64
PDB: ---
Notes: ---