1 publication

1 publication

A Whole Cell E. coli Display Platform for Artificial Metalloenzymes: Poly(phenylacetylene) Production with a Rhodium–Nitrobindin Metalloprotein

Schwaneberg, U.

ACS Catal. 2018, 8, 2611-2614, 10.1021/acscatal.7b04369

Whole cell catalysis is, in many cases, a prerequisite for the cost-effective production of chemicals by biotechnological means. Synthetic metal catalysts for bioorthogonal reactions can be inactivated within cells due to abundant thiol derivatives. Here, a cell surface display-based whole cell biohybrid catalyst system (termed ArMt bugs) is reported as a generally applicable platform to unify cost-effective whole cell catalysis with biohybrid catalysis. An inactivated esterase autotransporter is employed to display the nitrobindin protein scaffold with a Rh catalyst on the E. coli surface. Stereoselective polymerization of phenylacetylene yielded a high turnover number (TON) (39 × 106 cell–1) for the ArMt bugs conversion platform.


Metal: Rh
Ligand type: COD; Cp
Host protein: Nitrobindin variant NB4
Anchoring strategy: Cystein-maleimide
Optimization: ---
Max TON: 3046
ee: ---
PDB: ---
Notes: Calculated in vivo TON assuming 12800 metalloenzymes per E. coli cell