13 publications
-
An asymmetric catalyst
-
Nature 1956, 178, 323-324, 10.1038/178323b0
Asymmetric synthesis has hitherto succeeded only by using reagents or solvents having the asymmetric configuration.
Metal: PdLigand type: UndefinedHost protein: Silk fibroin fibreAnchoring strategy: UndefinedOptimization: ---Notes: ---
-
An Enantioselective Artificial Suzukiase Based on the Biotin–Streptavidin Technology
-
Chem. Sci. 2016, 7, 673-677, 10.1039/c5sc03116h
Introduction of a biotinylated monophosphine palladium complex within streptavidin affords an enantioselective artificial Suzukiase. Site-directed mutagenesis allowed the optimization of the activity and the enantioselectivity of this artificial metalloenzyme. A variety of atropisomeric biaryls were produced in good yields and up to 90% ee.
Metal: PdHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: PdHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
A Palladium-Catalyst Stabilized in the Chiral Environment of a Monoclonal Antibody in Water
-
Chem. Commun. 2020, 56, 1605-1607, 10.1039/c9cc08756g
We report the first preparation of a monoclonal antibody (mAb) that can immobilize a palladium (Pd)-complex. The allylic amination reaction using a supramolecular catalyst of the Pd-complex with mAb selectively gives the (R)-enantiomer product.
Notes: Recalculated TON
-
Artificial Metalloenzymes for Asymmetric Allylic Alkylation on the Basis of the Biotin–Avidin Technology
-
Angew. Chem. Int. Ed. 2008, 47, 701-705, 10.1002/anie.200703159
Palladium in the active site: The incorporation of a biotinylated palladium diphosphine within streptavidin yielded an artificial metalloenzyme for the title reaction (see scheme). Chemogenetic optimization of the catalyst by the introduction of a spacer (red star) between biotin (green triangle) and palladium and saturation mutagenesis at position S112X afforded both R‐ and S‐selective artificial asymmetric allylic alkylases.
Metal: PdLigand type: PhosphineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzymes Through Cysteine-Selective Conjugation of Phosphines to Photoactive Yellow Protein
-
ChemBioChem 2010, 11, 1236-1239, 10.1002/cbic.201000159
Pinning phosphines on proteins: A method for the cysteine‐selective bioconjugation of phosphines has been developed. The photoactive yellow protein has been site‐selectively functionalized with phosphine ligands and phosphine transition metal complexes to afford artificial metalloenzymes that are active in palladium‐catalysed allylic nucleophilic substitution reactions.
Metal: PdHost protein: Photoactive Yellow Protein (PYP)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ---
-
Atroposelective Antibodies as a Designed Protein Scaffold for Artificial Metalloenzymes
-
Sci. Rep. 2019, 9, 10.1038/s41598-019-49844-0
Design and engineering of protein scaffolds are crucial to create artificial metalloenzymes. Herein we report the first example of C-C bond formation catalyzed by artificial metalloenzymes, which consist of monoclonal antibodies (mAbs) and C2 symmetric metal catalysts. Prepared as a tailored protein scaffold for a binaphthyl derivative (BN), mAbs bind metal catalysts bearing a 1,1?-bi-isoquinoline (BIQ) ligand to yield artificial metalloenzymes. These artificial metalloenzymes catalyze the Friedel-Crafts alkylation reaction. In the presence of mAb R44E1, the reaction proceeds with 88% ee. The reaction catalyzed by Cu-catalyst incorporated into the binding site of mAb R44E1 is found to show excellent enantioselectivity with 99% ee. The protein environment also enables the use of BIQ-based catalysts as asymmetric catalysts for the first time.
Notes: ---
-
Control of the Coordination Structure of Organometallic Palladium Complexes in an Apo-Ferritin Cage
-
J. Am. Chem. Soc. 2008, 130, 10512-10514, 10.1021/ja802463a
We report the preparation of organometallic Pd(allyl) dinuclear complexes in protein cages of apo-Fr by reactions with [Pd(allyl)Cl]2 (allyl = η3-C3H5). One of the dinuclear complexes is converted to a trinuclear complex by replacing a Pd-coordinated His residue to an Ala residue. These results suggest that multinuclear metal complexes with various coordination structures could be prepared by the deletion or introduction of His, Cys, and Glu at appropriate positions on protein surface.
-
Definite Coordination Arrangement of Organometallic Palladium Complexes Accumulated on the Designed Interior Surface of Apo-Ferritin
-
Chem. Commun. 2011, 47, 170-172, 10.1039/C0CC02221G
Apo-ferritin (apo-Fr) mutants are used as scaffolds to accommodate palladium (allyl) complexes. Various coordination arrangements of the Pd complexes are achieved by adjusting the positions of cysteine and histidine residues on the interior surface of the apo-Fr cage.
-
Immobilization of Two Organometallic Complexes into a Single Cage to Construct Protein-Based Microcompartment
-
Chem. Commun. 2016, 52, 5463-5466, 10.1039/C6CC00679E
Natural protein-based microcompartments containing multiple enzymes promote cascade reactions within cells. We use the apo-ferritin protein cage to mimic such biocompartments by immobilizing two organometallic Ir and Pd complexes into the single protein cage. Precise locations of the metals and their accumulation mechanism were studied by X-ray crystallography.
Notes: Tandem reaction (Hydrogenation and Suzuki-Miyaura coupling) to form biphenylethanol from 4-iodoacetophenone and phenylboronic acid. TON and ee are given for the tandem reaction product.
Notes: Tandem reaction (Hydrogenation and Suzuki-Miyaura coupling) to form biphenylethanol from 4-iodoacetophenone and phenylboronic acid.
-
Intracellular Reactions Promoted by Bis(histidine) Miniproteins Stapled Using Palladium(II) Complexes
-
Angew. Chem. Int. Ed. 2020, 59, 9149-9154, 10.1002/anie.202002032
The generation of catalytically active metalloproteins inside living mammalian cells is a major research challenge at the interface between catalysis and cell biology. Herein we demonstrate that basic domains of bZIP transcription factors, mutated to include two histidine residues at i and i+4 positions, react with palladium(II) sources to generate catalytically active, stapled pallado-miniproteins. The resulting constrained peptides are efficiently internalized into living mammalian cells, where they perform palladium-promoted depropargylation reactions without cellular fixation. Control experiments confirm the requirement of the peptide scaffolding and the palladium staple for attaining the intracellular reactivity.
Metal: PdLigand type: Amino acidHost protein: GCN4 bZIP transcription factor (brHis2)Anchoring strategy: DativeOptimization: GeneticNotes: Whole cell catalysis
-
Preparation of an Immobilized Lipase-Palladium Artificial Metalloenzyme as Catalyst in the Heck Reaction: Role of the Solid Phase
-
Adv. Synth. Catal. 2015, 357, 2687-2696, 10.1002/adsc.201500014
A p‐nitrophenylphosphonate palladium pincer was synthesized and selectively inserted by irreversible attachment on the catalytic serine of different commercial lipases with good to excellent yields in most cases. Among all, lipase from Candida antarctica B (CAL‐B) was the best modified enzyme. The artificial metalloenzyme CAL‐B‐palladium (Pd) catalyst was subsequently immobilized on different supports and by different orienting strategies. The catalytic properties of the immobilized hybrid catalysts were then evaluated in two sets of Heck cross‐coupling reactions under different conditions. In the first reaction between iodobenzene and ethyl acrylate, the covalent immobilized CAL‐B‐Pd catalyst resulted to be the best one exhibiting quantitative production of the Heck product at 70 °C in dimethylformamide (DMF) with 25% water and particularly in pure DMF, where the soluble Pd pincer was completely inactive. A post‐immobilization engineering of catalyst surface by its hydrophobization enhanced the activity. The selectivity properties of the best hybrid catalyst were then assessed in the asymmetric Heck cross‐coupling reaction between iodobenzene and 2,3‐dihydrofuran retrieving excellent results in terms of stereo‐ and enantioselectivity.
Metal: PdLigand type: Thioether (Pincer complex)Host protein: Lipase B from C. antarctica (CALB)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ArM is immobilized on Sepabeads.
-
Robust and Versatile Hos Protein for the Design and Evaluation of Artificial Metal Centers
-
ACS Catal. 2019, 9, 11371-11380, 10.1021/acscatal.9b02896
Artificial metalloenzymes (ArMs) have high potential in biotechnological applications as they combine the versatility of transition-metal catalysis with the substrate selectivity of enzymes. An ideal host protein should allow high-yield recombinant expression, display thermal and solvent stability to withstand harsh reaction conditions, lack nonspecific metal-binding residues, and contain a suitable cavity to accommodate the artificial metal site. Moreover, to allow its rational functionalization, the host should provide an intrinsic reporter for metal binding and structural changes, which should be readily amendable to high-resolution structural characterization. Herein, we present the design, characterization, and de novo functionalization of a fluorescent ArM scaffold, named mTFP*, that achieves these characteristics. Fluorescence measurements allowed direct assessment of the scaffold’s structural integrity. Protein X-ray structures and transition metal Förster resonance energy transfer (tmFRET) studies validated the engineered metal coordination sites and provided insights into metal binding dynamics at the atomic level. The implemented active metal centers resulted in ArMs with efficient Diels–Alderase and Friedel–Crafts alkylase activities.
Ligand type: ---Host protein: Monomeric Teal FP (mTFP)Anchoring strategy: DativeOptimization: Chemical & geneticNotes: Also Friedel–Crafts alkylation
-
Supramolecular Anchoring of NCN-Pincer Palladium Complexes into a β-Barrel Protein Host: Molecular-Docking and Reactivity Insights
-
Eur. J. Inorg. Chem. 2017, 2017, 3622-3634, 10.1002/ejic.201700365
Several prochiral NCN‐pincer complexes of palladium(II), with hemilabile ligands and a long aliphatic chain, were synthesized and characterized spectroscopically. In some of the complexes, the presence of two different substituents on the N donor atoms made them stereogenic, so that they were isolated as a mixture of diastereoisomers, which could be differentiated by 1H NMR spectroscopy. Binding of some of these complexes to bovine β‐lactoglobin by insertion within its inner cavity was theoretically investigated by molecular‐docking simulations and was experimentally confirmed by CD spectroscopy. Adjunction of H‐bond donor substituents on the ligand framework gave more‐stable supramolecular protein–complex assemblies. These constructs were shown to catalyze aldol condensation reactions in aqueous media, affording, in some cases, the less‐favorable cis product. Since the corresponding complexes exclusively gave the trans product in the absence of β‐lactoglobulin, this unusual diastereoselectivity was ensued by the second sphere of coordination brought by the protein host.
Metal: PdLigand type: NCN-Pincer (amines)Host protein: β-lactoglobulin (βLG)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: Aldol condensation of methyl isocyanoacetate and benzaldehyde (trans/cis = 38:62)