3 publications
-
A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell
-
Nat. Commun. 2018, 9, 10.1038/s41467-018-04440-0
Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.
Notes: ---
-
An Artificial Metalloenzyme for Catalytic Cancer-Specific DNA Cleavage and Operando Imaging
-
Sci. Adv. 2020, 6, 10.1126/sciadv.abb1421
Metalloenzymes are promising anticancer candidates to overcome chemoresistance by involving unique mechanisms. To date, it is still a great challenge to obtain synthetic metalloenzymes with persistent catalytic performance for cancer-specific DNA cleavage and operando imaging. Here, an artificial metalloenzyme, copper cluster firmly anchored in bovine serum albumin conjugated with tumor-targeting peptide, is exquisitely constructed. It is capable of persistently transforming hydrogen peroxide in tumor microenvironment to hydroxyl radical and oxygen in a catalytic manner. The stable catalysis recycling stems from the electron transfer between copper cluster and substrate with well-matched energy levels. Notably, their high biocompatibility, tumor-specific recognition, and persistent catalytic performance ensure the substantial anticancer efficacy by triggering DNA damage. Meanwhile, by coupling with enzyme-like reactions, the operando therapy effect is expediently traced by chemiluminescence signal with high sensitivity and sustainability. It provides new insights into synthesizing biocompatible metalloenzymes on demand to visually monitor and efficiently combat specific cancers.
Metal: CuLigand type: Copper clusterHost protein: Bovine serum albumin (BSA)Anchoring strategy: DativeOptimization: ChemicalNotes: ---
-
Modular Design of G-Quadruplex MetalloDNAzymes for Catalytic C–C Bond Formations with Switchable Enantioselectivity
-
J. Am. Chem. Soc. 2021, 143, 3555-3561, 10.1021/jacs.0c13251
Metal-binding DNA structures with catalytic function are receiving increasing interest. Although a number of metalloDNAzymes have been reported to be highly efficient, the exact coordination/position of their catalytic metal center is often unknown. Here, we present a new approach to rationally develop metalloDNAzymes for Lewis acid-catalyzed reactions such as enantioselective Michael additions. Our strategy relies on the predictable folding patterns of unimolecular DNA G-quadruplexes, combined with the concept of metal-mediated base-pairing. Transition-metal coordination environments were created in G-quadruplex loop regions, accessible by substrates. Therefore, protein-inspired imidazole ligandoside L was covalently incorporated into a series of G-rich DNA strands by solid-phase synthesis. Iterative rounds of DNA sequence design and catalytic assays allowed us to select tailored metalloDNAzymes giving high conversions and excellent enantioselectivities (≥99%). Based on their primary sequence, folding pattern, and metal coordination mode, valuable information on structure–activity relationships could be extracted. Variation of the number and position of ligand L within the sequence allowed us to control the formation of (S) and (R) enantiomeric reaction products, respectively.
Metal: CuLigand type: DNA (G quadruplex)Host protein: metalloDNAzymeAnchoring strategy: Imidazole ligandosideOptimization: GeneticNotes: Km 35.2 uM, vmax-8.2 nM min-1