3 publications

3 publications

Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride

Hartwig, J.F.

Nat. Chem. 2021, 13, 312-318, 10.1038/s41557-020-00633-7

Enzymatic reactions through mononuclear metal hydrides are unknown in nature, despite the prevalence of such intermediates in the reactions of synthetic transition-metal catalysts. If metalloenzymes could react through abiotic intermediates like these, then the scope of enzyme-catalysed reactions would expand. Here we show that zinc-containing carbonic anhydrase enzymes catalyse hydride transfers from silanes to ketones with high enantioselectivity. We report mechanistic data providing strong evidence that the process involves a mononuclear zinc hydride. This work shows that abiotic silanes can act as reducing equivalents in an enzyme-catalysed process and that monomeric hydrides of electropositive metals, which are typically unstable in protic environments, can be catalytic intermediates in enzymatic processes. Overall, this work bridges a gap between the types of transformation in molecular catalysis and biocatalysis.


Metal: Zn
Ligand type: Histidine residues
Anchoring strategy: Native
Optimization: Chemical
Max TON: 500
ee: >99
PDB: ---
Notes: ---

A "Broad Spectrum" Carbene Transferase for Synthesis of Chiral α-Trifluoromethylated Organoborons

Roelfes, G.

ACS Cent. Sci. 2019, 5, 206-208, 10.1021/acscentsci.9b00015

Directed evolution generated an enzyme for the enantioselective synthesis of α-trifluoromethylated organoborons—potentially attractive synthons for fluorinated compounds.


Metal: Fe
Ligand type: Porphyrin
Host protein: Cytochrome c
Anchoring strategy: Native
Optimization: Genetic
Reaction: B-H insertion
Max TON: 2900
ee: 95
PDB: ---
Notes: ---

Nitrene Transfer Catalyzed by a Non-Heme Iron Enzyme and Enhanced by Non-Native Small-Molecule Ligands

Arnold, F.H.

J. Am. Chem. Soc. 2019, 141, 19585-19588, 10.1021/jacs.9b11608

Transition-metal catalysis is a powerful tool for the construction of chemical bonds. Here we show that Pseudomonas savastanoi ethylene-forming enzyme, a non-heme iron enzyme, can catalyze olefin aziridination and nitrene C−H insertion, and that these activities can be improved by directed evolution. The nonheme iron center allows for facile modification of the primary coordination sphere by addition of metalcoordinating molecules, enabling control over enzyme activity and selectivity using small molecules.


Metal: Fe
Ligand type: Amino acid
Anchoring strategy: Native
Optimization: Genetic
Reaction: C-H amination
Max TON: 730
ee: 61
PDB: 6CBA
Notes: Additional reaction: aziridination