3 publications
-
A Metal Ion Regulated Artificial Metalloenzyme
-
Dalton Trans. 2017, 46, 4325-4330, 10.1039/C7DT00533D
An artificial metalloenzyme containing both a regulatory and a catalytic domain is selectively activated in presence of Fe2+ ions.
Metal: FeLigand type: BypyridineHost protein: Lactoccal multidrug resistant regulator (LmrR)Anchoring strategy: CovalentOptimization: GeneticNotes: ---
Metal: ZnLigand type: BypyridineHost protein: Lactoccal multidrug resistant regulator (LmrR)Anchoring strategy: CovalentOptimization: GeneticNotes: ---
-
A Positive Charge in the Outer Coordination Sphere of an Artificial Enzyme Increases CO2 Hydrogenation
-
Organometallics 2020, 39, 1532-1544, 10.1021/acs.organomet.9b00843
The protein scaffold around the active site of enzymes is known to influence catalytic activity, but specific scaffold features responsible for favorable influences are often not known. This study focuses on using an artificial metalloenzyme to probe one specific feature of the scaffold, the position of a positive charge in the outer coordination sphere around the active site. Previous work showed that a small molecular complex, [Rh(PEt2NglycinePEt2)2]−, immobilized covalently within a protein scaffold was activated for CO2 hydrogenation. Here, using an iterative design where the effect of arginine, histidine, or lysine residues placed in the outer coordination sphere of the catalytic active site were evaluated, we tested the hypothesis that positively charged groups facilitate CO2 hydrogenation with seven unique constructs. Single-, double-, and triple-point mutations were introduced to directly compare catalytic activity, as monitored by turnover frequencies (TOFs) measured in real time with 1H NMR spectroscopy, and evaluate related structural and electronic properties. Two of the seven constructs showed a 2- and 3-fold increase relative to the wild type, with overall rates ranging from 0.2 to 0.7 h–1, and a crystal structure of the fastest of these shows the positive charge positioned next to the active site. A crystal structure of the arginine-containing complex shows that the arginines are positioned near the metal. Molecular dynamics (MD) studies also suggest that the positive charge is oriented next to the active site in the two constructs with faster rates but not in the others and that the positive charge near the active site holds the CO2 near the metal, all consistent with a positive charge appropriately positioned in the scaffold benefiting catalysis. The MD studies also suggest that changes in the water distribution around the active site may contribute to catalytic activity, while modest structural changes and movement of the complex within the scaffold do not.
Metal: RhLigand type: BisdiphosphineHost protein: Lactoccal multidrug resistant regulator (LmrR)Anchoring strategy: CovalentOptimization: Chemical & computational designNotes: ---
-
Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins
-
J. Am. Chem. Soc. 2017, 139, 17289-17292, 10.1021/jacs.7b10452
Copper–hydroperoxido species (CuII–OOH) have been proposed to be key intermediates in biological and synthetic oxidations. Using biotin–streptavidin (Sav) technology, artificial copper proteins have been developed to stabilize a CuII–OOH complex in solution and in crystallo. Stability is achieved because the Sav host provides a local environment around the Cu–OOH that includes a network of hydrogen bonds to the hydroperoxido ligand. Systematic deletions of individual hydrogen bonds to the Cu–OOH complex were accomplished using different Sav variants and demonstrated that stability is achieved with a single hydrogen bond to the proximal O-atom of the hydroperoxido ligand: changing this interaction to only include the distal O-atom produced a reactive variant that oxidized an external substrate.
Metal: CuLigand type: Bis(2-(pyridin-2-yl)ethyl)amineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---