Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

47 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

14

ee:

11

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

100

ee:

79

PDB:

---

Notes:

---

A General Method for Artificial Metalloenzyme Formationthrough Strain-Promoted Azide–Alkyne Cycloaddition

Strain‐promoted azide–alkyne cycloaddition (SPAAC) can be used to generate artificial metalloenzymes (ArMs) from scaffold proteins containing a p‐azido‐L‐phenylalanine (Az) residue and catalytically active bicyclononyne‐substituted metal complexes. The high efficiency of this reaction allows rapid ArM formation when using Az residues within the scaffold protein in the presence of cysteine residues or various reactive components of cellular lysate. In general, cofactor‐based ArM formation allows the use of any desired metal complex to build unique inorganic protein materials. SPAAC covalent linkage further decouples the native function of the scaffold from the installation process because it is not affected by native amino acid residues; as long as an Az residue can be incorporated, an ArM can be generated. We have demonstrated the scope of this method with respect to both the scaffold and cofactor components and established that the dirhodium ArMs generated can catalyze the decomposition of diazo compounds and both SiH and olefin insertion reactions involving these carbene precursors.

Metal:

Rh

Ligand type:

Poly-carboxylic acid

Host protein:

tHisF

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Cyclopropanation

Max TON:

81

ee:

---

PDB:

1THF

Notes:

---

Metal:

Rh

Ligand type:

Poly-carboxylic acid

Host protein:

tHisF

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Si-H Insertion

Max TON:

7

ee:

---

PDB:

1THF

Notes:

---

An Artificial Metalloenzyme for Carbene Transfer Based on a Biotinylated Dirhodium Anchored Within Streptavidin

Metal:

Rh

Ligand type:

Carboxylate

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

~60

ee:

---

PDB:

---

Notes:

Cyclopropanation reaction was also performed in the E. coli periplasm.

Metal:

Rh

Ligand type:

Carboxylate

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

C-H insertion

Max TON:

~60

ee:

---

PDB:

---

Notes:

---

A Protein-Rhodium Complex as an Efficient Catalyst for Two-Phase Olefin Hydroformylation

Metal:

Rh

Ligand type:

Acac; CO2

Anchoring strategy:

Undefined

Optimization:

---

Reaction:

Hydroformylation

Max TON:

~600

ee:

---

PDB:

---

Notes:

---

Aqueous Biphasic Hydroformylation Catalysed by Protein-Rhodium Complexes

Metal:

Rh

Ligand type:

Undefined

Anchoring strategy:

Undefined

Optimization:

---

Reaction:

Hydroformylation

Max TON:

741000

ee:

---

PDB:

---

Notes:

---

Aqueous Oxidation of Alcohols Catalyzed by Artificial Metalloenzymes Based on the Biotin–Avidin Technology

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

200

ee:

---

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

230

ee:

---

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Bipyridine; C6Me6

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

173

ee:

---

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

7.5

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

30

ee:

---

PDB:

---

Notes:

---

Aqueous Phase Transfer Hydrogenation of Aryl Ketones Catalysed by Achiral Ruthenium(II) and Rhodium(III) Complexes and their Papain Conjugates

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

96

ee:

15

PDB:

---

Notes:

---

A Rhodium Complex-Linked β-Barrel Protein as a Hybrid Biocatalyst for Phenylacetylene Polymerization

Our group recently prepared a hybrid catalyst containing a rhodium complex, Rh(Cp)(cod), with a maleimide moiety at the peripheral position of the Cp ligand. This compound was then inserted into a β-barrel protein scaffold of a mutant of aponitrobindin (Q96C) via a covalent linkage. The hybrid protein is found to act as a polymerization catalyst and preferentially yields trans-poly(phenylacetylene) (PPA), although the rhodium complex without the protein scaffold normally produces cis PPA.

Metal:

Rh

Ligand type:

COD; Cp*

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Cystein-maleimide

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin for the Asymmetric Transfer Hydrogenation of an Aryl Ketone – Synthesis, Characterization and Catalytic Activity

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

14

ee:

32

PDB:

---

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin-Avidin

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

96

PDB:

---

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein Accelerated Catalysis

Metal:

Rh

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

Reduction of acetamidoacrylic acid. 3.0-fold protein acceleration.

Metal:

Rh

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

39

PDB:

---

Notes:

Reduction of acetamidoacrylic acid. 12.0-fold protein acceleration.

Artificial Metalloenzymes: (Strept)avidin as Host for Enantioselective Hydrogenation by Achiral Biotinylated Rhodium-Diphosphine Complexes

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

---

Artificial Transfer Hydrogenases Based on the Biotin-(Strept)avidin Technology: Fine Tuning the Selectivity by Saturation Mutagenesis of the Host Protein

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

96

ee:

80

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

73

ee:

60

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

95

ee:

70

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

79

ee:

97

PDB:

---

Notes:

---

Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4000

ee:

96

PDB:

3PK2

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

94

ee:

52

PDB:

3PK2

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

97

ee:

22

PDB:

3PK2

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

76

ee:

12

PDB:

3PK2

Notes:

---

Asymmetric Hydrogenation with Antibody-Achiral Rhodium Complex

Metal:

Rh

Ligand type:

COD; Phosphine

Host protein:

Antibody 1G8

Anchoring strategy:

Antibody

Optimization:

---

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Asymmetric δ-Lactam Synthesis with a Monomeric Streptavidin Artificial Metalloenzyme

Metal:

Rh

Ligand type:

Cp*; OAc

Host protein:

Streptavidin (monmeric)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Lactam synthesis

Max TON:

33

ee:

97

PDB:

---

Notes:

---

A Whole Cell E. coli Display Platform for Artificial Metalloenzymes: Poly(phenylacetylene) Production with a Rhodium–Nitrobindin Metalloprotein

Metal:

Rh

Ligand type:

COD; Cp

Host protein:

Nitrobindin variant NB4

Anchoring strategy:

Cystein-maleimide

Optimization:

---

Max TON:

3046

ee:

---

PDB:

---

Notes:

Calculated in vivo TON assuming 12800 metalloenzymes per E. coli cell

Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation

Metal:

Rh

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

C-H activation

Max TON:

95

ee:

82

PDB:

---

Notes:

---

Burkavidin: A Novel Secreted Biotin-Binding Protein from the Human Pathogen Burkholderia Pseudomallei

Metal:

Rh

Ligand type:

Diphenylphosphine

Host protein:

Burkavidin

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

~110

ee:

65

PDB:

---

Notes:

---

Catalytic Hydrogenation of Itaconic Acid in a Biotinylated Pyrphos-Rhodium(I) System in a Protein Cavity

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Hydrogenation

Max TON:

31

ee:

48

PDB:

---

Notes:

---

Chemically Engineered Papain as Artificial Formate Dehydrogenase for NAD(P)H Regeneration

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

TOF = 52.1 h-1 for NAD+

Chemical Optimization of Artificial Metalloenzymes Based on the Biotin-Avidin Technology: (S)-Selective and Solvent-Tolerant Hydrogenation Catalysts via the Introduction of Chiral Amino Acid Spacers

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Conversion of a Protein to a Homogeneous Asymmetric Hydrogenation Catalyst by Site-Specific Modification with a Diphosphinerhodium (I) Moiety

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Hydrogenation

Max TON:

500

ee:

41

PDB:

---

Notes:

---

Counter Propagation Artificial Neural Networks Modeling of an Enantioselectivity of Artificial Metalloenzymes

Metal:

Rh

Ligand type:

Diphenylphosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

Computational prediction of the enantioselectivity of the hydrogenation reaction catalysed by the ArM.

Directed Evolution of Hybrid Enzymes: Evolving Enantioselectivity of an Achiral Rh-Complex Anchored to a Protein

Metal:

Rh

Ligand type:

COD; Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Hydrogenation

Max TON:

4500

ee:

65

PDB:

---

Notes:

---

Direct Hydrogenation of Carbon Dioxide by an Artificial Reductase Obtained by Substituting Rhodium for Zinc in the Carbonic Anhydrase Catalytic Center. A Mechanistic Study

Metal:

Rh

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

---

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

Computational study of the reaction mechanism of the formation of HCOOH from CO2

Enantioselective Transfer Hydrogenation of Ketone Catalysed by Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

34

ee:

26

PDB:

---

Notes:

---

Engineering a Dirhodium Artificial Metalloenzyme for Selective Olefin Cyclopropanation

Metal:

Rh

Ligand type:

Poly-carboxylic acid

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

74

ee:

92

PDB:

---

Notes:

---

Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes

Metal:

Rh

Ligand type:

Acac; Diphenylphosphine

Anchoring strategy:

Cystein-maleimide

Optimization:

Chemical & genetic

Reaction:

Hydroformylation

Max TON:

409

ee:

---

PDB:

---

Notes:

Selectivity for the linear product over the branched product

Evolving Artificial Metalloenzymes via Random Mutagenesis

Metal:

Rh

Ligand type:

OAc

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

66

ee:

94

PDB:

5T88

Notes:

Mutagenesis of the ArM by error-prone PCR

Metal:

Rh

Ligand type:

OAc

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

N-H Insertion

Max TON:

73

ee:

40

PDB:

5T88

Notes:

Mutagenesis of the ArM by error-prone PCR

Metal:

Rh

Ligand type:

OAc

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

S-H Insertion

Max TON:

64

ee:

32

PDB:

5T88

Notes:

Mutagenesis of the ArM by error-prone PCR

Metal:

Rh

Ligand type:

OAc

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

Si-H Insertion

Max TON:

35

ee:

64

PDB:

5T88

Notes:

Mutagenesis of the ArM by error-prone PCR