4 publications
-
Artificial Diels–Alderase based on the Transmembrane Protein FhuA
-
Beilstein J. Org. Chem. 2016, 12, 1314-1321, 10.3762/bjoc.12.124
Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVFtev). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels–Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product.
Metal: CuLigand type: TerpyridineHost protein: Ferric hydroxamate uptake protein component: A (FhuA)Anchoring strategy: Cystein-maleimideOptimization: ChemicalNotes: ---
-
Capture and Characterization of a Reactive Haem– Carbenoid Complex in an Artificial Metalloenzyme
-
Nat. Catal. 2018, 1, 578-584, 10.1038/s41929-018-0105-6
Non-canonical amino acid ligands are useful for fine-tuning the catalytic properties of metalloenzymes. Here, we show that recombinant replacement of the histidine ligand proximal to haem in myoglobin with Nδ-methylhistidine enhances the protein’s promiscuous carbene-transfer chemistry, enabling efficient styrene cyclopropanation in the absence of reductant, even under aerobic conditions. The increased electrophilicity of the modified Fe(iii) centre, combined with subtle structural adjustments at the active site, allows direct attack of ethyl diazoacetate to produce a reactive carbenoid adduct, which has an unusual bridging Fe(iii)–C–N(pyrrole) configuration as shown by X-ray crystallography. Quantum chemical calculations suggest that the bridged complex equilibrates with the more reactive end-on isomer, ensuring efficient cyclopropanation. These findings underscore the potential of non-canonical ligands for extending the capabilities of metalloenzymes by opening up new reaction pathways and facilitating the characterization of reactive species that would not otherwise accumulate.
Notes: Structure of the Mb*(NMH) haem-iron complex
Notes: Structure of the Mb*(NMH) haem-iron–carbenoid complex
-
Construction of a Hybrid Biocatalyst Containing a Covalently-Linked Terpyridine Metal Complex within a Cavity of Aponitrobindin
-
J. Inorg. Biochem. 2016, 158, 55-61, 10.1016/j.jinorgbio.2015.12.026
A hybrid biocatalyst containing a metal terpyridine (tpy) complex within a rigid β-barrel protein nitrobindin (NB) is constructed. A tpy ligand with a maleimide group, N-[2-([2,2′:6′,2′′-terpyridin]-4′-yloxy)ethyl]maleimide (1), was covalently linked to Cys96 inside the cavity of NB to prepare a conjugate NB–1. Binding of Cu2 +, Zn2 +, or Co2 + ion to the tpy ligand in NB–1 was confirmed by UV–vis spectroscopy and ESI–TOF MS measurements. Cu2 +-bound NB–1 is found to catalyze a Diels–Alder reaction between azachalcone and cyclopentadiene in 22% yield, which is higher than that of the Cu2 +–tpy complex without the NB matrix. The results suggest that the hydrophobic cavity close to the copper active site within the NB scaffold supports the binding of the two substrates, dienophile and diene, to promote the reaction.
Metal: CuLigand type: TerpyridineHost protein: Nitrobindin (Nb)Anchoring strategy: Cystein-maleimideOptimization: ---Notes: ---
-
Regulating Transition Metal Catalysis Through Interference by Short RNAs
-
Angew. Chem. Int. Ed. 2019, 58, 16400-16404, 10.1002/anie.201905333
Herein we report the discovery of a AuI–DNA hybrid catalyst that is compatible with biological media and whose reactivity can be regulated by small complementary nucleic acid sequences. The development of this catalytic system was enabled by the discovery of a novel AuI‐mediated base pair. We found that AuI binds DNA containing C‐T mismatches. In the AuI–DNA catalyst's latent state, the AuI ion is sequestered by the mismatch such that it is coordinatively saturated, rendering it catalytically inactive. Upon addition of an RNA or DNA strand that is complementary to the latent catalyst's oligonucleotide backbone, catalytic activity is induced, leading to a sevenfold increase in the formation of a fluorescent product, forged through a AuI‐catalyzed hydroamination reaction. Further development of this catalytic system will expand not only the chemical space available to synthetic biological systems but also allow for temporal and spatial control of transition‐metal catalysis through gene transcription.
Notes: ---