Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

35 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

Abiological Catalysis by Artificial Haem Proteins Containing Noble Metals in Place of Iron

Enzymes that contain metal ions—that is, metalloenzymes—possess the reactivity of a transition metal centre and the potential of molecular evolution to modulate the reactivity and substrate-selectivity of the system1. By exploiting substrate promiscuity and protein engineering, the scope of reactions catalysed by native metalloenzymes has been expanded recently to include abiological transformations2,3. However, this strategy is limited by the inherent reactivity of metal centres in native metalloenzymes. To overcome this limitation, artificial metalloproteins have been created by incorporating complete, noble-metal complexes within proteins lacking native metal sites1,4,5. The interactions of the substrate with the protein in these systems are, however, distinct from those with the native protein because the metal complex occupies the substrate binding site. At the intersection of these approaches lies a third strategy, in which the native metal of a metalloenzyme is replaced with an abiological metal with reactivity different from that of the metal in a native protein6,7,8. This strategy could create artificial enzymes for abiological catalysis within the natural substrate binding site of an enzyme that can be subjected to directed evolution. Here we report the formal replacement of iron in Fe-porphyrin IX (Fe-PIX) proteins with abiological, noble metals to create enzymes that catalyse reactions not catalysed by native Fe-enzymes or other metalloenzymes9,10. In particular, we prepared modified myoglobins containing an Ir(Me) site that catalyse the functionalization of C–H bonds to form C–C bonds by carbene insertion and add carbenes to both β-substituted vinylarenes and unactivated aliphatic α-olefins. We conducted directed evolution of the Ir(Me)-myoglobin and generated mutants that form either enantiomer of the products of C–H insertion and catalyse the enantio- and diastereoselective cyclopropanation of unactivated olefins. The presented method of preparing artificial haem proteins containing abiological metal porphyrins sets the stage for the generation of artificial enzymes from innumerable combinations of PIX-protein scaffolds and unnatural metal cofactors to catalyse a wide range of abiological transformations.

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

7260

ee:

68

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

92

ee:

84

PDB:

---

Notes:

---

Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation

We report on the synthesis of biotinylated (cyclopentadienone)iron tricarbonyl complexes, the in situ generation of the corresponding streptavidin conjugates and their application in asymmetric hydrogenation of imines and ketones.

Metal:

Fe

Ligand type:

CO; Cyclopentadienone

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

20

ee:

34

PDB:

---

Notes:

---

An Artificial Metalloenzyme with the Kinetics of Native Enzymes

Natural enzymes contain highly evolved active sites that lead to fast rates and high selectivities. Although artificial metalloenzymes have been developed that catalyze abiological transformations with high stereoselectivity, the activities of these artificial enzymes are much lower than those of natural enzymes. Here, we report a reconstituted artificial metalloenzyme containing an iridium porphyrin that exhibits kinetic parameters similar to those of natural enzymes. In particular, variants of the P450 enzyme CYP119 containing iridium in place of iron catalyze insertions of carbenes into C–H bonds with up to 98% enantiomeric excess, 35,000 turnovers, and 2550 hours−1 turnover frequency. This activity leads to intramolecular carbene insertions into unactivated C–H bonds and intermolecular carbene insertions into C–H bonds. These results lift the restrictions on merging chemical catalysis and biocatalysis to create highly active, productive, and selective metalloenzymes for abiological reactions.

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

582

ee:

98

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

C-H activation

Max TON:

35129

ee:

91

PDB:

---

Notes:

---

An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades

Metal:

Ir

Ligand type:

Cp*; Phenanthroline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

>999

ee:

>99

PDB:

---

Notes:

---

Artificial Diels–Alderase based on the Transmembrane Protein FhuA

Metal:

Cu

Ligand type:

Terpyridine

Host protein:

FhuA

Anchoring strategy:

Cystein-maleimide

Optimization:

Chemical

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Artificial Hydrogenases Based on Cobaloximes and Heme Oxygenase

Metal:

Co

Ligand type:

Oxime

Host protein:

Heme oxygenase (HO)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

H2 evolution

Max TON:

15.3

ee:

---

PDB:

---

Notes:

---

Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities

Review

Notes:

---

Artificial Metalloenzymes with the Neocarzinostatin Scaffold: Toward a Biocatalyst for the Diels–Alder Reaction

Metal:

Cu

Ligand type:

Phenanthroline

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

33

ee:

---

PDB:

---

Notes:

Up to endo/exo ratio 62:38

A Structural View of Synthetic Cofactor Integration into [FeFe]-Hydrogenases

Metal:

Fe

Ligand type:

CN; CO; Dithiolate

Anchoring strategy:

Dative

Optimization:

Chemical

Reaction:

H2 evolution

Max TON:

---

ee:

---

PDB:

4XDC

Notes:

H2 evolution activity of the ArM: 2874 (mmol H2)*min-1*(mg protein)-1.

Asymmetric Catalytic Sulfoxidation by a Novel VIV8 Cluster Catalyst in the Presence of Serum Albumin: A Simple and Green Oxidation System

Metal:

V

Anchoring strategy:

Undefined

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

140

ee:

77

PDB:

---

Notes:

Screening with different serum albumins.

Bovine Serum Albumin-Cobalt(II) Schiff Base Complex Hybrid: An Efficient Artificial Metalloenzyme for Enantioselective Sulfoxidation using Hydrogen Peroxide

Metal:

Co

Ligand type:

Amine; Phenolate

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

98

ee:

87

PDB:

---

Notes:

---

Catalysis Without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation

Metal:

Fe

Ligand type:

BPHMEN

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

1367

ee:

---

PDB:

---

Notes:

---

Construction of a Hybrid Biocatalyst Containing a Covalently-Linked Terpyridine Metal Complex within a Cavity of Aponitrobindin

Metal:

Cu

Ligand type:

Terpyridine

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Cystein-maleimide

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Coordination Complexes and Biomolecules: A Wise Wedding for Catalysis Upgrade

Review

Notes:

---

Design and Engineering of Artificial Oxygen-Activating Metalloenzymes

Review

Notes:

---

Design Strategies for Redox Active Metalloenzymes: Applications in Hydrogen Production

Review

Notes:

Book chapter

Directed Evolution of Artificial Metalloenzymes for In Vivo Metathesis

Metal:

Ru

Ligand type:

Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Olefin metathesis

Max TON:

610

ee:

---

PDB:

---

Notes:

Reaction in the periplasm

Directed Evolution of Iridium-Substituted Myoglobin Affords Versatile Artificial Metalloenzymes for Enantioselective C-C Bond-Forming Reactions

Review

Notes:

---

Efficient in Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

>1980

ee:

---

PDB:

---

Notes:

ArM works in combination with the ene reductase (ER) of the Old Yellow Enzyme family fromThermus scotuductus (TsOYE).

Evaluation of Chemical Diversity of Biotinylated Chiral 1,3-Diamines as a Catalytic Moiety in Artificial Imine Reductase

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

>99

ee:

83

PDB:

3PK2

Notes:

---

Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions

Review

Notes:

---

Immobilization of an Artificial Imine Reductase Within Silica Nanoparticles Improves its Performance

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

4554

ee:

89

PDB:

---

Notes:

Reaction in nanoparticles

Immobilization of Two Organometallic Complexes into a Single Cage to Construct Protein-Based Microcompartment

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Apo-ferritin

Anchoring strategy:

Dative

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

~2

ee:

15

PDB:

5E2D

Notes:

Tandem reaction (Hydrogenation and Suzuki-Miyaura coupling) to form biphenylethanol from 4-iodoacetophenone and phenylboronic acid. TON and ee are given for the tandem reaction product.

Metal:

Pd

Ligand type:

Allyl; Amino acid

Host protein:

Apo-ferritin

Anchoring strategy:

Dative

Optimization:

Chemical

Max TON:

~1

ee:

15

PDB:

5E2D

Notes:

Tandem reaction (Hydrogenation and Suzuki-Miyaura coupling) to form biphenylethanol from 4-iodoacetophenone and phenylboronic acid.

Library Design and Screening Protocol for Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

183

ee:

71

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

42

ee:

59

PDB:

---

Notes:

Cell free extract (mutant Sav K121A) treated with diamide

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

66

ee:

---

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

18

ee:

---

PDB:

---

Notes:

Cell free extract (mutant Sav K121A immobilised on iminobiotin-sepharose beads)

Metal-Directed Design of Supramolecular Protein Assemblies

Review

Notes:

---

Metatheases: Artificial Metalloproteins for Olefin Metathesis

Review

Notes:

---

Modular Homogeneous Chromophore-Catalyst Assemblies

Review

Notes:

---

Optimization of and Mechanistic Considerations for the Enantioselective Dihydroxylation of Styrene Catalyzed by Osmate-Laccase-Poly(2-Methyloxazoline) in Organic Solvents

Metal:

Os

Ligand type:

Undefined

Host protein:

Laccase

Anchoring strategy:

Undefined

Optimization:

Chemical

Reaction:

Dihydroxylation

Max TON:

842

ee:

> 99

PDB:

---

Notes:

---

Oxidation Catalysis via Visible-Light Water Activation of a [Ru(bpy)3]2+ Chromophore BSA–Metallocorrole Couple

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

21

ee:

16

PDB:

---

Notes:

Water as oxygen source

Periplasmic Screening for Artificial Metalloenzymes

Review

Notes:

Book chapter