8 publications

8 publications

A Cofactor Approach to Copper-Dependent Catalytic Antibodies

Janda, K. D.; Nicholas, K. M.

Proc. Natl. Acad. Sci. U. S. A., 2002, 10.1073/pnas.052001099

A strategy for the preparation of semisynthetic copper(II)-based catalytic metalloproteins is described in which a metal-binding bis-imidazole cofactor is incorporated into the combining site of the aldolase antibody 38C2. Antibody 38C2 features a large hydrophobic-combining site pocket with a highly nucleophilic lysine residue, LysH93, that can be covalently modified. A comparison of several lactone and anhydride reagents shows that the latter are the most effective and general derivatizing agents for the 38C2 Lys residue. A bis-imidazole anhydride (5) was efficiently prepared from N-methyl imidazole. The 38C2–5-Cu conjugate was prepared by either (i) initial derivatization of 38C2 with 5 followed by metallation with CuCl2, or (ii) precoordination of 5 with CuCl2 followed by conjugation with 38C2. The resulting 38C2–5-Cu conjugate was an active catalyst for the hydrolysis of the coordinating picolinate ester 11, following Michaelis–Menten kinetics [kcat(11) = 2.3 min−1 and Km(11) 2.2 mM] with a rate enhancement [kcat(11)kuncat(11)] of 2.1 × 105. Comparison of the second-order rate constants of the modified 38C2 and the Cu(II)-bis-imidazolyl complex k(6-CuCl2) gives a rate enhancement of 3.5 × 104 in favor of the antibody complex with an effective molarity of 76.7 M, revealing a significant catalytic benefit to the binding of the bis-imidazolyl ligand into 38C2.


Metal: Cu
Ligand type: Bisimidazol
Host protein: Antibody 38C2
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Aqueous Biphasic Hydroformylation Catalysed by Protein-Rhodium Complexes

Marchetti, M.

Adv. Synth. Catal., 2002, 10.1002/1615-4169(200207)344:5<556::AID-ADSC556>3.0.CO;2-E


Metal: Rh
Ligand type: Undefined
Anchoring strategy: Undefined
Optimization: ---
Reaction: Hydroformylation
Max TON: 741000
ee: ---
PDB: ---
Notes: ---

Coordination Chemistry of Iron(III)-Porphyrin-Antibody Complexes Influence on the Peroxidase Activity of the Axial Coordination of an Imidazole on the Iron Atom

Mahy, J.-P.

Eur. J. Biochem., 2002, 10.1046/j.0014-2956.2001.02670.x


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 13G10
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: kcat/KM = 15200 M-1 * s-1

Hemoabzymes: Towards New Biocatalysts for Selective Oxidations

Mahy, J.-P.

J. Immunol. Methods, 2002, 10.1016/S0022-1759(02)00223-5


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 3A3
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: kcat/KM = 33000 M-1 * s-1

Metal Substitution in Thermolysin: Catalytic Properties of Tungstate Thermolysin in Sulfoxidation with H2O2

Sheldon, R. A.

Can. J. Chem., 2002, 10.1139/v02-082


Metal: W
Ligand type: Amino acid
Host protein: Thermolysin
Anchoring strategy: Metal substitution
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

New Functionalization of Myoglobin by Chemical Modification of Heme-Propionates

Review

Acc. Chem. Res., 2002, 10.1021/ar000087t


Notes: ---

Regioselective Nitration of Phenol Induced by Catalytic Antibodies

Mahy, J.-P.

J. Protein Chem., 2002, 10.1023/A:1021351120772


Metal: Fe
Ligand type: Amino acid; Porphyrin
Host protein: Antibody 3A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: C-H oxidation
Max TON: 36
ee: ---
PDB: ---
Notes: Nitration of phenol

Towards the Directed Evolution of Hybrid Catalysts

Reetz, M. T.

Chimia, 2002, 10.2533/000942902777679920


Metal: Mn
Ligand type: Salen
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Epoxidation
Max TON: ---
ee: < 10
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Dipyridin-2-ylmethane
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Hydrogenation
Max TON: ---
ee: < 10
PDB: ---
Notes: ---