8 publications
-
A Cofactor Approach to Copper-Dependent Catalytic Antibodies
-
Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 2648-2653, 10.1073/pnas.052001099
A strategy for the preparation of semisynthetic copper(II)-based catalytic metalloproteins is described in which a metal-binding bis-imidazole cofactor is incorporated into the combining site of the aldolase antibody 38C2. Antibody 38C2 features a large hydrophobic-combining site pocket with a highly nucleophilic lysine residue, LysH93, that can be covalently modified. A comparison of several lactone and anhydride reagents shows that the latter are the most effective and general derivatizing agents for the 38C2 Lys residue. A bis-imidazole anhydride (5) was efficiently prepared from N-methyl imidazole. The 38C2–5-Cu conjugate was prepared by either (i) initial derivatization of 38C2 with 5 followed by metallation with CuCl2, or (ii) precoordination of 5 with CuCl2 followed by conjugation with 38C2. The resulting 38C2–5-Cu conjugate was an active catalyst for the hydrolysis of the coordinating picolinate ester 11, following Michaelis–Menten kinetics [kcat(11) = 2.3 min−1 and Km(11) 2.2 mM] with a rate enhancement [kcat(11)kuncat(11)] of 2.1 × 105. Comparison of the second-order rate constants of the modified 38C2 and the Cu(II)-bis-imidazolyl complex k(6-CuCl2) gives a rate enhancement of 3.5 × 104 in favor of the antibody complex with an effective molarity of 76.7 M, revealing a significant catalytic benefit to the binding of the bis-imidazolyl ligand into 38C2.
Metal: CuLigand type: BisimidazolHost protein: Antibody 38C2Anchoring strategy: CovalentOptimization: GeneticNotes: ---
-
Aqueous Biphasic Hydroformylation Catalysed by Protein-Rhodium Complexes
-
Adv. Synth. Catal. 2002, 344, 556, 10.1002/1615-4169(200207)344:5<556::AID-ADSC556>3.0.CO;2-E
The water‐soluble complex derived from Rh(CO)2(acac) and human serum albumin (HSA) proved to be efficient in the hydroformylation of several olefin substrates. The chemoselectivity and regioselectivity were generally higher than those obtained by using the classic catalytic systems like TPPTS‐Rh(I) (TPPTS=triphenylphosphine‐3,3′,3″‐trisulfonic acid trisodium salt). Styrene and 1‐octene, for instance, were converted in almost quantitative yields into the corresponding oxo‐aldehydes at 60 °C and 70 atm (CO/H2=1) even at very low Rh(CO)2(acac)/HSA catalyst concentrations. The possibility of easily recovering the Rh(I) compound makes the system environmentally friendly. The circular dichroism technique was useful for demonstrating the Rh(I) binding to the protein and to give information on the stability in solution of the catalytic system. Some other proteins have been used to replace HSA as complexing agent for Rh(I). The results were less impressive than those obtained using HSA and their complexes with Rh(I) were much less stable.
Metal: RhLigand type: UndefinedHost protein: Human serum albumin (HSA)Anchoring strategy: UndefinedOptimization: ---Notes: ---
-
Coordination Chemistry of Iron(III)-Porphyrin-Antibody Complexes Influence on the Peroxidase Activity of the Axial Coordination of an Imidazole on the Iron Atom
-
Eur. J. Biochem. 2002, 269, 470-480, 10.1046/j.0014-2956.2001.02670.x
An artificial peroxidase‐like hemoprotein has been obtained by associating a monoclonal antibody, 13G10, and its iron(III)–α,α,α,β‐meso‐tetrakis(ortho‐carboxyphenyl)porphyrin [Fe(ToCPP)] hapten. In this antibody, about two‐thirds of the porphyrin moiety is inserted in the binding site, its ortho‐COOH substituents being recognized by amino‐acids of the protein, and a carboxylic acid side chain of the protein acts as a general acid base catalyst in the heterolytic cleavage of the O–O bond of H2O2, but no amino‐acid residue is acting as an axial ligand of the iron. We here show that the iron of 13G10–Fe(ToCPP) is able to bind, like that of free Fe(ToCPP), two small ligands such as CN–, but only one imidazole ligand, in contrast to to the iron(III) of␣Fe(ToCPP) that binds two. This phenomenon is general for a series of monosubstituted imidazoles, the 2‐ and 4‐alkyl‐substituted imidazoles being the best ligands, in agreement with the hydrophobic character of the antibody binding site. Complexes of antibody 13G10 with less hindered iron(III)–tetraarylporphyrins bearing only one [Fe(MoCPP)] or two meso‐[ortho‐carboxyphenyl] substituents [Fe(DoCPP)] also bind only one imidazole. Finally, peroxidase activity studies show that imidazole inhibits the peroxidase activity of 13G10–Fe(ToCPP) whereas it increases that of 13G10–Fe(DoCPP). This could be interpreted by the binding of the imidazole ligand on the iron atom which probably occurs in the case of 13G10–Fe(ToCPP) on the less hindered face of the porphyrin, close to the catalytic COOH residue, whereas in the case of 13G10–Fe(DoCPP) it can occur on the other face of the porphyrin. The 13G10–Fe(DoCPP)–imidazole complex thus constitutes a nice artificial peroxidase‐like hemoprotein, with the axial imidazole ligand of the iron mimicking the proximal histidine of peroxidases and a COOH side chain of the antibody acting as a general acid‐base catalyst like the distal histidine of peroxidases does.
Metal: FeLigand type: PorphyrinHost protein: Antibody 13G10Anchoring strategy: SupramolecularOptimization: ---Notes: kcat/KM = 15200 M-1 * s-1
-
Hemoabzymes: Towards New Biocatalysts for Selective Oxidations
-
J. Immunol. Methods 2002, 269, 39-57, 10.1016/S0022-1759(02)00223-5
Catalytic antibodies with a metalloporphyrin cofactor or «hemoabzymes», used as models for hemoproteins like peroxidases and cytochrome P450, represent a promising route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that until now, the first strategy for obtaining such artificial hemoproteins has been to produce antiporphyrin antibodies, raised against various free-base, N-substituted Sn-, Pd- or Fe-porphyrins. Five of them exhibited, in the presence of the corresponding Fe-porphyrin cofactor, a significant peroxidase activity, with kcat/Km values of 3.7×103–2.9×105 M−1 min−1. This value remained, however, low when compared to that of peroxidases. This strategy has also led to a few models of cytochrome P450. The best of them, raised against a water-soluble tin(IV) porphyrin containing an axial α-naphtoxy ligand, was reported to catalyze the stereoselective oxidation of aromatic sulfides by iodosyl benzene using a Ru(II)-porphyrin cofactor. The relatively low efficiency of the porphyrin–antibody complexes is probably due, at least in part, to the fact that no proximal ligand of Fe has been induced in those antibodies. We then proposed to use, as a hapten, microperoxidase 8 (MP8), a heme octapeptide in which the imidazole side chain of histidine 18 acts as a proximal ligand of the iron atom. This led to the production of seven antibodies recognizing MP8, the best of them, 3A3, binding it with an apparent binding constant of 10−7 M. The corresponding 3A3–MP8 complex was found to have a good peroxidase activity characterized by a kcat/Km value of 2×106 M−1 min−1, which constitutes the best one ever reported for an antibody–porphyrin complex. Active site topology studies suggest that the binding of MP8 occurs through interactions of its carboxylate substituents with amino acids of the antibody and that the protein brings a partial steric hindrance of the distal face of the heme of MP8. Consequently, the use of the 3A3–MP8 complexes for the selective oxidation of substrates, such as sulfides, alkanes and alkenes will be undertaken in the future.
Metal: FeLigand type: PorphyrinHost protein: Antibody 3A3Anchoring strategy: SupramolecularOptimization: ---Notes: kcat/KM = 33000 M-1 * s-1
-
Metal Substitution in Thermolysin: Catalytic Properties of Tungstate Thermolysin in Sulfoxidation with H2O2
-
Can. J. Chem. 2002, 80, 622-625, 10.1139/v02-082
The catalytic Zn2+ ion was extracted from thermolysin, which had been covalently bound to Eupergit C. The apo-enzyme incorporated the oxometallate anions MoO42, SeO42, and WO42 with partial restoration of the proteolytic activity. Tungstate thermolysin was moderately active in the sulfoxidation of thioanisole by hydrogen peroxide, whereas its activity towards phenylmercaptoacetophenone, which was designed to bind well in the active site of thermolysin, was much higher.
Metal: WLigand type: Amino acidHost protein: ThermolysinAnchoring strategy: Metal substitutionOptimization: ChemicalNotes: ---
-
New Functionalization of Myoglobin by Chemical Modification of Heme-Propionates
Review -
Acc. Chem. Res. 2002, 35, 35-43, 10.1021/ar000087t
The reconstitution of myoglobin with an artificially created prosthetic group is a unique method for introducing a new chemical function into the protein. Particularly, the modification of two heme-propionates gives us an effective binding domain or binding site on the protein surface. This Account traces the design and construction of the highly ordered binding domain around the entrance of the heme pocket. The discussion includes the protein−small molecule or protein−protein recognition, electron transfer reaction within the complex, and enhancement of the chemical reactivity of the myoglobin with a substrate binding site. The synthetic approach to modifying a protein will be a new trend in engineering a novel function in naturally occurring hemoprotein.
Notes: ---
-
Regioselective Nitration of Phenol Induced by Catalytic Antibodies
-
J. Protein Chem. 2002, 21, 473-477, 10.1023/A:1021351120772
Catalytic antibodies with a metalloporphyrin cofactor represent a new generation of biocatalysts tailored for selective oxidations. Thus monoclonal antibodies, 3A3, were raised against microperoxidase 8 (MP8), and the corresponding 3A3-MP8 complexes were shown previously to have a high peroxidase activity. This paper shows that those complexes also catalyzed efficiently the nitration of phenol into 2- and 4-nitrophenol by NO2 − in the presence of H2O2. pH dependence studies suggested that no amino acid from the antibody protein participated in the heterolytic cleavage of the O-O bond of H2O2. The inhibition of the reaction by cyanide and radical scavengers suggested a MP8-mediated peroxidase-like mechanism, involving the reduction of high-valent iron-oxo species by NO2 − and phenol producing, respectively, NO2 · and phenoxy radicals, which then reacted to give nitrophenols. Finally, the antibody protein appears to have two major roles: (i) it protects MP8 toward oxidative degradations and (ii) it induces a regioselectivity of the reaction toward the formation of 2-nitrophenol.
Notes: Nitration of phenol
-
Towards the Directed Evolution of Hybrid Catalysts
-
Chimia 2002, 56, 721-723, 10.2533/000942902777679920
The first step in applying the recently proposed concept concerning the application of directed evolution to the creation of selective hybrid catalysts is described, specifically the covalent attachment of Mn-salen moieties and of Cu-, Pd-, and Rh-complexes of dipyridine derivatives as well as the implantation of a diphosphine moiety in a protein, future steps being cycles of mutagenesis/screening.
Metal: MnLigand type: SalenHost protein: Papain (PAP)Anchoring strategy: CovalentOptimization: ---Notes: ---
Metal: RhLigand type: Dipyridin-2-ylmethaneHost protein: Papain (PAP)Anchoring strategy: CovalentOptimization: ---Notes: ---