20 publications

20 publications

A Hydrogenase Model System Based on the Sequence of Cytochrome c: Photochemical Hydrogen Evolution in Aqueous Media

Hayashi, T

Chem. Commun., 2011, 10.1039/c1cc11157d

The diiron carbonyl cluster is held by a native CXXC motif, which includes Cys14 and Cys17, in the cytochrome c sequence. It is found that the diiron carbonyl complex works well as a catalyst for H2 evolution. It has a TON of ∼80 over 2 h at pH 4.7 in the presence of a Ru-photosensitizer and ascorbate as a sacrificial reagent in aqueous media.


Metal: Fe
Ligand type: Carbonyl
Host protein: Cytochrome c
Anchoring strategy: Dative
Optimization: ---
Reaction: H2 evolution
Max TON: 82
ee: ---
PDB: ---
Notes: Horse heart cytochrome C

An Artificial Metalloenzyme for Olefin Metathesis

Hilvert, D.; Ward, T. R.

Chem. Commun., 2011, 10.1039/c1cc15005g

A Grubbs–Hoveyda type olefin metathesis catalyst, equipped with an electrophilic bromoacetamide group, was used to modify a cysteine-containing variant of a small heat shock protein from Methanocaldococcus jannaschii. The resulting artificial metalloenzyme was found to be active under acidic conditions in a benchmark ring closing metathesis reaction.


Metal: Ru
Ligand type: Carbene
Anchoring strategy: Covalent
Optimization: ---
Reaction: Olefin metathesis
Max TON: 25
ee: ---
PDB: ---
Notes: RCM

Artificial Metalloenzymes Based on the Biotin-Avidin Technology: Enantioselective Catalysis and Beyond

Review

Ward, T. R.

Acc. Chem. Res., 2011, 10.1021/ar100099u


Notes: ---

Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-(Strept)Avidin Technology

Ward, T. R.

Chem. Commun., 2011, 10.1039/c1cc15004a


Metal: Ru
Ligand type: Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 14
ee: ---
PDB: ---
Notes: RCM

Metal: Ru
Ligand type: Carbene
Host protein: Avidin (Av)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 19
ee: ---
PDB: ---
Notes: RCM

Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines

Ward, T. R.

Angew. Chem., Int. Ed., 2011, 10.1002/anie.201007820


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 4000
ee: 96
PDB: 3PK2
Notes: ---

Metal: Rh
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 94
ee: 52
PDB: 3PK2
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; P-cymene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 97
ee: 22
PDB: 3PK2
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 76
ee: 12
PDB: 3PK2
Notes: ---

Bimetallic Copper-Heme-Protein-DNA Hybrid Catalyst for Diels Alder Reaction

Fruk, L.; Niemeyer, C. M.

Croat. Chem. Acta, 2011, 10.5562/cca1828


Metal: Cu
Ligand type: Bipyridine
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: 7.1
ee: 18
PDB: ---
Notes: Horse heart myoglobin

Bioinspired Catalyst Design and Artificial Metalloenzymes

Review

Kamer, P. C. J.; Laan, W.

Chem. - Eur. J., 2011, 10.1002/chem.201003646


Notes: ---

Burkavidin: A Novel Secreted Biotin-Binding Protein from the Human Pathogen Burkholderia Pseudomallei

Creus, M.

Protein Expression Purif., 2011, 10.1016/j.pep.2011.01.003


Metal: Rh
Ligand type: Diphenylphosphine
Host protein: Burkavidin
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Hydrogenation
Max TON: ~110
ee: 65
PDB: ---
Notes: ---

Chemically Engineered Papain as Artificial Formate Dehydrogenase for NAD(P)H Regeneration

Salmain, M.

Org. Biomol. Chem., 2011, 10.1039/c1ob05482a


Metal: Rh
Ligand type: Cp*; Poly-pyridine
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Hydrogenation
Max TON: ---
ee: ---
PDB: ---
Notes: TOF = 52.1 h-1 for NAD+

Covalent Anchoring of a Racemization Catalyst to CALB-Beads: Towards Dual Immobilization of DKR Catalysts

Klein Gebbink, R. J. M.; van Koten, G.

Tetrahedron Lett., 2011, 10.1016/j.tetlet.2011.01.106


Metal: Ru
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Acylation
Max TON: ---
ee: >99%
PDB: ---
Notes: Lipase CALB is immobilized on a solid support (Novozym®435). Dynamic kinetic resolution (DKR) of 1-phenylethanol to the acylated product.

Covalent Versus Non-covalent (Biocatalytic) Approaches for Enantioselective Sulfoxidation Catalyzed by Corrole Metal Complexes

Gross, Z.

Cat. Sci. Technol., 2011, 10.1039/c1cy00046b


Metal: Mn
Ligand type: Corrole
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 45
ee: 70
PDB: ---
Notes: ---

Definite Coordination Arrangement of Organometallic Palladium Complexes Accumulated on the Designed Interior Surface of Apo-Ferritin

Ueno, T.

Chem. Commun., 2011, 10.1039/C0CC02221G


Metal: Pd
Ligand type: Allyl
Host protein: Ferritin
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Suzuki coupling
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Design of a Switchable Eliminase

DeGrado, W. F.

Proc. Natl. Acad. Sci. U. S. A., 2011, 10.1073/pnas.1018191108


Metal: Ca
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Kemp elimination
Max TON: >40
ee: ---
PDB: 2KZ2
Notes: Ca acts as allosteric regulator, catalytically active site contains no metal

Dual Modification of a Triple-Stranded β-Helix Nanotube with Ru and Re Metal Complexes to Promote Photocatalytic Reduction of CO2

Ueno, T.

Chem. Commun., 2011, 10.1039/C0CC03015E


Metal: Re
Ligand type: Bipyridine; CO
Host protein: [(gp5βf)3]2
Anchoring strategy: Cystein-maleimide
Optimization: ---
Reaction: CO2 reduction
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Bipyridine
Host protein: [(gp5βf)3]2
Anchoring strategy: Lysine-succinimide
Optimization: Genetic
Reaction: CO2 reduction
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Hydrolytic Catalysis and Structural Stabilization in a Designed Metalloprotein

Pecoraro, V. L.

Nat. Chem., 2011, 10.1038/NCHEM.1201


Metal: Hg; Zn
Ligand type: Amino acid
Host protein: TRI peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: >10
ee: ---
PDB: 3PBJ
Notes: Zn ion for catalytic activity, Hg ion for structural stability of the ArM. PDB ID 3PBJ = Structure of an analogue.

Metal: Hg; Zn
Ligand type: Amino acid
Host protein: TRI peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 3PBJ
Notes: Zn ion for catalytic activity, Hg ion for structural stability of the ArM, kcat/KM ≈ 1.8*105 M-1*s-1. PDB ID 3PBJ = Structure of an analogue.

Merging the Best of Two Worlds: Artificial Metalloenzymes for Enantioselective Catalysis

Review

Ward, T. R.

Chem. Commun., 2011, 10.1039/c1cc11592h


Notes: ---

Nature-Driven Photochemistry for Catalytic Solar Hydrogen Production: A Photosystem I-Transition Metal Catalyst Hybrid

Tiede, D. M.; Utschig, L. M.

J. Am. Chem. Soc., 2011, 10.1021/ja206012r


Metal: Co
Ligand type: Oxime; Pyridine
Host protein: Photosystem I (PSI)
Anchoring strategy: Undefined
Optimization: ---
Reaction: H2 evolution
Max TON: 2080
ee: ---
PDB: ---
Notes: Recalculated TON

OsO4·Streptavidin: A Tunable Hybrid Catalyst for the Enantioselective cis-Dihydroxylation of Olefins

Ward, T. R.

Angew. Chem., Int. Ed., 2011, 10.1002/anie.201103632


Metal: Os
Ligand type: Undefined
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Dihydroxylation
Max TON: 16
ee: 97
PDB: ---
Notes: ---

Precise Design of Artificial Cofactors for Enhancing Peroxidase Activity of Myoglobin: Myoglobin Mutant H64D Reconstituted with a “Single-Winged Cofactor” is Equivalent to Native Horseradish Peroxidase in Oxidation Activity

Matsuo, T.

Chem. - Asian J., 2011, 10.1002/asia.201100107


Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: ---
Notes: ---

The Important Role of Covalent Anchor Positions in Tuning Catalytic Properties of a Rationally Designed MnSalen-Containing Metalloenzyme

Lu, Y.; Zhang, J.-L.

ACS Catal., 2011, 10.1021/cs200258e


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: ---
ee: 83
PDB: ---
Notes: Reaction rate: 2.3 min-1