10 publications
-
A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase
-
J. Am. Chem. Soc. 2017, 139, 5149-5155, 10.1021/jacs.7b00675
Thermally stable TM1459 cupin superfamily protein from Thermotoga maritima was repurposed as an osmium (Os) peroxygenase by metal-substitution strategy employing the metal-binding promiscuity. This novel artificial metalloenzyme bears a datively bound Os ion supported by the 4-histidine motif. The well-defined Os center is responsible for not only the catalytic activity but also the thermodynamic stability of the protein folding, leading to the robust biocatalyst (Tm ≈ 120 °C). The spectroscopic analysis and atomic resolution X-ray crystal structures of Os-bound TM1459 revealed two types of donor sets to Os center with octahedral coordination geometry. One includes trans-dioxide, OH, and mer-three histidine imidazoles (O3N3 donor set), whereas another one has four histidine imidazoles plus OH and water molecule in a cis position (O2N4 donor set). The Os-bound TM1459 having the latter donor set (O2N4 donor set) was evaluated as a peroxygenase, which was able to catalyze cis-dihydroxylation of several alkenes efficiently. With the low catalyst loading (0.01% mol), up to 9100 turnover number was achieved for the dihydroxylation of 2-methoxy-6-vinyl-naphthalene (50 mM) using an equivalent of H2O2 as oxidant at 70 °C for 12 h. When octene isomers were dihydroxylated in a preparative scale for 5 h (2% mol cat.), the terminal alkene octene isomers was converted to the corresponding diols in a higher yield as compared with the internal alkenes. The result indicates that the protein scaffold can control the regioselectivity by the steric hindrance. This protein scaffold enhances the efficiency of the reaction by suppressing disproportionation of H2O2 on Os reaction center. Moreover, upon a simple site-directed mutagenesis, the catalytic activity was enhanced by about 3-fold, indicating that Os-TM1459 is evolvable nascent osmium peroxygenase.
Metal: OsLigand type: Amino acidHost protein: TM1459 cupinAnchoring strategy: Metal substitutionOptimization: GeneticNotes: Exclusively cis dihydroxylation product obtained
Metal: OsLigand type: Amino acidHost protein: TM1459 cupinAnchoring strategy: Metal substitutionOptimization: GeneticNotes: Exclusively cis dihydroxylation product obtained
-
Biocompatibility and Therapeutic Potential of Glycosylated Albumin Artificial Metalloenzymes
-
Nat. Catal. 2019, 2, 780-792, 10.1038/s41929-019-0317-4
The ability of natural metalloproteins to prevent inactivation of their metal cofactors by biological metabolites, such as glutathione, is an area that has been largely ignored in the field of artificial metalloenzyme (ArM) development. Yet, for ArM research to transition into future therapeutic applications, biocompatibility remains a crucial component. The work presented here shows the creation of a human serum albumin-based ArM that can robustly protect the catalytic activity of a bound ruthenium metal, even in the presence of 20 mM glutathione under in vitro conditions. To exploit this biocompatibility, the concept of glycosylated artificial metalloenzymes (GArM) was developed, which is based on functionalizing ArMs with N-glycan targeting moieties. As a potential drug therapy, this study shows that ruthenium-bound GArM complexes could preferentially accumulate to varying cancer cell lines via glycan-based targeting for prodrug activation of the anticancer agent umbelliprenin using ring-closing metathesis.
Metal: RuLigand type: Hoveyda–GrubbsHost protein: Human serum albumin (HSA)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
-
Diruthenium Diacetate-Catalyzed Aerobic Oxidation of Hydroxylamines and Improved Chemoselectivity by Immobilization to Lysozyme
-
ChemCatChem 2017, 9, 4225-4230, 10.1002/cctc.201701083
A new green method for the preparation of nitrones through the aerobic oxidation of the corresponding N,N‐disubstituted hydroxylamines has been developed upon exploring the catalytic activity of a diruthenium catalyst, that is, [Ru2(OAc)4Cl]), in aqueous or alcoholic solution under mild reaction conditions (0.1 to 1 mol % catalyst, air, 50 °C) and reasonable reaction times. Notably, the catalytic activity of the dimetallic centre is retained after its binding to the small protein lysozyme. Interestingly, this new artificial metalloenzyme conferred complete chemoselectivity to the oxidation of cyclic hydroxylamines, in contrast to the diruthenium catalyst.
-
Library Design and Screening Protocol for Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology
-
Nat. Protoc. 2016, 11, 835-852, 10.1038/nprot.2016.019
Artificial metalloenzymes (ArMs) based on the incorporation of a biotinylated metal cofactor within streptavidin (Sav) combine attractive features of both homogeneous and enzymatic catalysts. To speed up their optimization, we present a streamlined protocol for the design, expression, partial purification and screening of Sav libraries. Twenty-eight positions have been subjected to mutagenesis to yield 335 Sav isoforms, which can be expressed in 24-deep-well plates using autoinduction medium. The resulting cell-free extracts (CFEs) typically contain >1 mg of soluble Sav. Two straightforward alternatives are presented, which allow the screening of ArMs using CFEs containing Sav. To produce an artificial transfer hydrogenase, Sav is coupled to a biotinylated three-legged iridium pianostool complex Cp*Ir(Biot-p-L)Cl (the cofactor). To screen Sav variants for this application, you would determine the number of free binding sites, treat them with diamide, incubate them with the cofactor and then perform the reaction with your test compound (the example used in this protocol is 1-phenyl-3,4-dihydroisoquinoline). This process takes 20 d. If you want to perform metathesis reactions, Sav is coupled to a biotinylated second-generation Grubbs-Hoveyda catalyst. In this application, it is best to first immobilize Sav on Sepharose-iminobiotin beads and then perform washing steps. Elution from the beads is achieved in an acidic reaction buffer before incubation with the cofactor. Catalysis using your test compound (in this protocol, 2-(4-(N,N-diallylsulfamoyl)phenyl)-N,N,N-trimethylethan-1-aminium iodide) is performed using the formed metalloenzyme. Screening using this approach takes 19 d.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Purified streptavidin (mutant K121A)
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Cell free extract (mutant Sav K121A) treated with diamide
Metal: RuLigand type: N-heterocyclic carbeneHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Purified streptavidin (mutant K121A)
Metal: RuLigand type: N-heterocyclic carbeneHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Cell free extract (mutant Sav K121A immobilised on iminobiotin-sepharose beads)
-
Optimization of and Mechanistic Considerations for the Enantioselective Dihydroxylation of Styrene Catalyzed by Osmate-Laccase-Poly(2-Methyloxazoline) in Organic Solvents
-
ChemCatChem 2016, 8, 593-599, 10.1002/cctc.201501083
The Sharpless dihydroxylation of styrene with the artificial metalloenzyme osmate‐laccase‐poly(2‐methyloxazoline) was investigated to find reaction conditions that allow this unique catalyst to reveal its full potential. After changing the co‐oxidizing agent to tert‐butyl hydroperoxide and optimizing the osmate/enzyme ratio, the turnover frequency and the turnover number could be increased by an order of magnitude, showing that the catalyst can compete with classical organometallic catalysts. Varying the metal in the active center showed that osmate is by far the most active catalytic center, but the reaction can also be realized with permanganate and iron(II) salts.
-
OsO4·Streptavidin: A Tunable Hybrid Catalyst for the Enantioselective cis-Dihydroxylation of Olefins
-
Angew. Chem. Int. Ed. 2011, 50, 10863-10866, 10.1002/anie.201103632
Taking control: Selective catalysts for olefin dihydroxylation have been generated by the combination of apo‐streptavidin and OsO4. Site‐directed mutagenesis allows improvement of enantioselectivity and even inversion of enantiopreference in certain cases. Notably allyl phenyl sulfide and cis‐β‐methylstyrene were converted with unprecedented enantiomeric excess.
Metal: OsLigand type: UndefinedHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: GeneticNotes: ---
-
Polymer Enzyme Conjugates as Chiral Ligands for Sharpless Dihydroxylation of Alkenes in Organic Solvents
-
ChemBioChem 2015, 16, 83-90, 10.1002/cbic.201402339
Count Os in: We report organosoluble artificial metalloenzymes, generated from poly(2‐methyl‐oxazoline) enzyme conjugates and osmate as a promising new catalytic system for the dihydroxylation of alkenes in organic media.
Metal: OsLigand type: Amino acidHost protein: LaccaseAnchoring strategy: Metal substitutionOptimization: ChemicalNotes: ---
-
Receptor-Based Artificial Metalloenzymes on Living Human Cells
-
J. Am. Chem. Soc. 2018, 140, 8756-8762, 10.1021/jacs.8b04326
Artificial metalloenzymes are known to be promising tools for biocatalysis, but their recent compartmentalization has led to compatibly with cell components thus shedding light on possible therapeutic applications. We prepared and characterized artificial metalloenzymes based on the A2A adenosine receptor embedded in the cytoplasmic membranes of living human cells. The wild type receptor was chemically engineered into metalloenzymes by its association with strong antagonists that were covalently bound to copper(II) catalysts. The resulting cells enantioselectively catalyzed the abiotic Diels–Alder cycloaddition reaction of cyclopentadiene and azachalcone. The prospects of this strategy lie in the organ-confined in vivo preparation of receptor-based artificial metalloenzymes for the catalysis of reactions exogenous to the human metabolism. These could be used for the targeted synthesis of either drugs or deficient metabolites and for the activation of prodrugs, leading to therapeutic tools with unforeseen applications.
Metal: CuLigand type: PhenanthrolineHost protein: A2A adenosine receptorAnchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Synthesis of a Heterogeneous Artificial Metallolipase with Chimeric Catalytic Activity
-
Chem. Commun. 2015, 51, 9324-9327, 10.1039/C5CC02450A
A solid-phase strategy using lipase as a biomolecular scaffold to produce a large amount of Cu2+-metalloenzyme is proposed here. The application of this protocol on different 3D cavities of the enzyme allows creating a heterogeneous artificial metallolipase showing chimeric catalytic activity. The artificial catalyst was assessed in Diels–Alder cycloaddition reactions and cascade reactions showing excellent catalytic properties.
Metal: CuLigand type: PhenanthrolineHost protein: Lipase from G. thermocatenulatus (GTL)Anchoring strategy: CovalentOptimization: GeneticNotes: ArM is immobilized on Sepabeads. Endo/exo = 93.5%
Metal: CuLigand type: PhenanthrolineHost protein: Lipase from G. thermocatenulatus (GTL)Anchoring strategy: CovalentOptimization: GeneticNotes: Cascade reaction: Ester hydrolysis (natural function of the host protein) followed by reduction (function of the designed ArM).
-
The Bovine Serum Albumin-2-Phenylpropane-1,2-diolatodioxoosmium(VI) Complex as an Enantioselective Catalyst for cis-Hydroxylation of Alkenes
-
J. Chem. Soc., Chem. Commun. 1983, 0, 769-770, 10.1039/C39830000769
The 1:1 complex between an osmate ester and bovine serum albumin was found to be effective as an enantioselective catalyst in the cis-hydroxylation of alkenes, affording diols in up to 68% e.e. and turnover of the catalyst with t-butyl hydroperoxide.
Metal: OsLigand type: UndefinedHost protein: Bovine serum albumin (BSA)Anchoring strategy: UndefinedOptimization: ---Notes: ---