2 publications

2 publications

A Chaperonin as Protein Nanoreactor for Atom-Transfer Radical Polymerization

Bruns, N.

Angew. Chem. Int. Ed. 2014, 53, 1443-1447, 10.1002/anie.201306798

The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom‐transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N‐isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein–catalyst conjugate only yielded polymers with PDIs above 1.84.


Metal: Cu
Host protein: Thermosome (THS)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Polymerization
Max TON: ---
ee: ---
PDB: ---
Notes: Non-ROMP

Catalyst Design in Oxidation Chemistry; from KMnO4 to Artificial Metalloenzymes

Review

Jarvis, A.G.; Kamer, P.C.J.

Bioorg. Med. Chem. 2014, 22, 5657-5677, 10.1016/j.bmc.2014.07.002

Oxidation reactions are an important part of the synthetic organic chemist’s toolkit and continued advancements have, in many cases, resulted in high yields and selectivities. This review aims to give an overview of the current state-of-the-art in oxygenation reactions using both chemical and enzymatic processes, the design principles applied to date and a possible future in the direction of hybrid catalysts combining the best of chemical and natural design.


Notes: ---