5 publications
-
Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions
Review -
Chem. Rec. 2012, 12, 391-406, 10.1002/tcr.201100043
Numerous enzymes are useful catalysts in synthetic organic chemistry, but they cannot catalyze the myriad transition‐metal‐mediated transformations customary in daily chemical work. For this reason the concept of directed evolution of hybrid catalysts was proposed some time ago. A synthetic ligand/transition‐metal moiety is anchored covalently or non‐covalently to a host protein, thereby generating a single artificial metalloenzyme which can then be optimized by molecular biological methods. In the quest to construct an appropriate experimental platform for asymmetric Diels–Alder reactions amenable to this Darwinian approach to catalysis, specifically those not currently possible using traditional chiral transition‐metal catalysts, two strategies have been developed which are reviewed here. One concerns the supramolecular anchoring of a Cu(II)‐phthalocyanine complex to serum albumins; the other is based on the design of a Cu(II)‐specific binding site in a thermostable protein host (tHisF), leading to 46–98% ee in a model Diels–Alder reaction. This sets the stage for genetic fine‐tuning using the methods of directed evolution.
Notes: ---
-
De Novo Metalloprotein Design
Review -
Nat. Rev. Chem. 2022, 6, 31-50, 10.1038/s41570-021-00339-5
Natural metalloproteins perform many functions — ranging from sensing to electron transfer and catalysis — in which the position and property of each ligand and metal are dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures — uncomplicated by the large size and evolutionary marks of natural proteins — to interrogate structure–function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure–function relationships, functional proteins including O2-dependent oxidases, fast hydrolases and multi-proton/multielectron reductases have been created. In addition, proteins can now be designed using xenobiological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Notes: ---
-
Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology
-
Helv. Chim. Acta 2018, 101, e1800036, 10.1002/hlca.201800036
Photocatalytic hydrogen evolution by an artificial hydrogenase based on the biotin‐streptavidin technology is reported. A biotinylated cobalt pentapyridyl‐based hydrogen evolution catalyst (HEC) was incorporated into different mutants of streptavidin. Catalysis with [Ru(bpy)3]Cl2 as a photosensitizer (PS) and ascorbate as sacrificial electron donor (SED) at different pH values highlighted the impact of close lying amino acids that may act as a proton relay under the reaction conditions (Asp, Arg, Lys). In the presence of a close‐lying lysine residue, both, the rates were improved, and the reaction was initiated much faster. The X‐ray crystal structure of the artificial hydrogenase reveals a distance of 8.8 Å between the closest lying Co‐moieties. We thus suggest that the hydrogen evolution mechanism proceeds via a single Co centre. Our findings highlight that streptavidin is a versatile host protein for the assembly of artificial hydrogenases and their activity can be fine‐tuned via mutagenesis.
Metal: CoHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
The Importance of Catalytic Promiscuity for Enzyme Design and Evolution
Review -
Nat. Rev. Chem. 2019, 3, 687-705, 10.1038/s41570-019-0143-x
The ability of one enzyme to catalyse multiple, mechanistically distinct transformations likely played a crucial role in organisms’ abilities to adapt to changing external stimuli in the past and can still be observed in extant enzymes. Given the importance of catalytic promiscuity in nature, enzyme designers have recently begun to create catalytically promiscuous enzymes in order to expand the canon of transformations catalysed by proteins. This article aims to both critically review different strategies for the design of enzymes that display catalytic promiscuity for new-to-nature reactions and highlight the successes of subsequent directed-evolution efforts to fine-tune these novel reactivities. For the former, we put a particular emphasis on the creation, stabilization and repurposing of reaction intermediates, which are key for unlocking new activities in an existing or designed active site. For the directed evolution of the resulting catalysts, we contrast approaches for enzyme design that make use of components found in nature and those that achieve new reactivities by incorporating synthetic components. Following the critical analysis of selected examples that are now available, we close this Review by providing a set of considerations and design principles for enzyme engineers, which will guide the future generation of efficient artificial enzymes for synthetically useful, abiotic transformations.
Notes: ---
-
The Plasticity of Redox Cofactors: From Metalloenzymes to Redox-Active DNA
Review -
Nat. Rev. Chem. 2018, 2, 231-243, 10.1038/s41570-018-0029-3
Metal cofactors considerably widen the catalytic space of naturally occurring enzymes whose specific and enantioselective catalytic activity constitutes a blueprint for economically relevant chemical syntheses. To optimize natural enzymes and uncover novel reactivity, we need a detailed understanding of cofactor–protein interactions, which can be challenging to obtain in the case of enzymes with sophisticated cofactors. As a case study, we summarize recent research on the [FeFe]-hydrogenases, which interconvert protons, electrons and dihydrogen at a unique iron-based active site. We can now chemically synthesize the complex cofactor and incorporate it into an apo-protein to afford functional enzymes. By varying both the cofactor and the polypeptide components, we have obtained detailed knowledge on what is required for a metal cluster to process H2. In parallel, the design of artificial proteins and catalytically active nucleic acids are advancing rapidly. In this Perspective, we introduce these fields and outline how chemists and biologists can use this knowledge to develop novel tailored semisynthetic catalysts.
Notes: ---