Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

27 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation

We report on the synthesis of biotinylated (cyclopentadienone)iron tricarbonyl complexes, the in situ generation of the corresponding streptavidin conjugates and their application in asymmetric hydrogenation of imines and ketones.

Metal:

Fe

Ligand type:

CO; Cyclopentadienone

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

20

ee:

34

PDB:

---

Notes:

---

An asymmetric catalyst

Asymmetric synthesis has hitherto succeeded only by using reagents or solvents having the asymmetric configuration.

Metal:

Pd

Ligand type:

Undefined

Host protein:

Silk fibroin fibre

Anchoring strategy:

Undefined

Optimization:

---

Reaction:

Hydrogenation

Max TON:

>22

ee:

---

PDB:

---

Notes:

---

Aqueous Phase Transfer Hydrogenation of Aryl Ketones Catalysed by Achiral Ruthenium(II) and Rhodium(III) Complexes and their Papain Conjugates

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

96

ee:

15

PDB:

---

Notes:

---

Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin for the Asymmetric Transfer Hydrogenation of an Aryl Ketone – Synthesis, Characterization and Catalytic Activity

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

14

ee:

32

PDB:

---

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin-Avidin

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

96

PDB:

---

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein Accelerated Catalysis

Metal:

Rh

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

Reduction of acetamidoacrylic acid. 3.0-fold protein acceleration.

Metal:

Rh

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

39

PDB:

---

Notes:

Reduction of acetamidoacrylic acid. 12.0-fold protein acceleration.

Artificial Metalloenzymes: (Strept)avidin as Host for Enantioselective Hydrogenation by Achiral Biotinylated Rhodium-Diphosphine Complexes

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

---

Asymmetric Hydrogenation with Antibody-Achiral Rhodium Complex

Metal:

Rh

Ligand type:

COD; Phosphine

Host protein:

Antibody 1G8

Anchoring strategy:

Antibody

Optimization:

---

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Burkavidin: A Novel Secreted Biotin-Binding Protein from the Human Pathogen Burkholderia Pseudomallei

Metal:

Rh

Ligand type:

Diphenylphosphine

Host protein:

Burkavidin

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

~110

ee:

65

PDB:

---

Notes:

---

Catalytic Hydrogenation of Itaconic Acid in a Biotinylated Pyrphos-Rhodium(I) System in a Protein Cavity

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Hydrogenation

Max TON:

31

ee:

48

PDB:

---

Notes:

---

Chemically Engineered Papain as Artificial Formate Dehydrogenase for NAD(P)H Regeneration

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

TOF = 52.1 h-1 for NAD+

Chemical Optimization of Artificial Metalloenzymes Based on the Biotin-Avidin Technology: (S)-Selective and Solvent-Tolerant Hydrogenation Catalysts via the Introduction of Chiral Amino Acid Spacers

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Conversion of a Protein to a Homogeneous Asymmetric Hydrogenation Catalyst by Site-Specific Modification with a Diphosphinerhodium (I) Moiety

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Hydrogenation

Max TON:

500

ee:

41

PDB:

---

Notes:

---

Counter Propagation Artificial Neural Networks Modeling of an Enantioselectivity of Artificial Metalloenzymes

Metal:

Rh

Ligand type:

Diphenylphosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

Computational prediction of the enantioselectivity of the hydrogenation reaction catalysed by the ArM.

Directed Evolution of Hybrid Enzymes: Evolving Enantioselectivity of an Achiral Rh-Complex Anchored to a Protein

Metal:

Rh

Ligand type:

COD; Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Hydrogenation

Max TON:

4500

ee:

65

PDB:

---

Notes:

---

Direct Hydrogenation of Carbon Dioxide by an Artificial Reductase Obtained by Substituting Rhodium for Zinc in the Carbonic Anhydrase Catalytic Center. A Mechanistic Study

Metal:

Rh

Ligand type:

Amino acid

Anchoring strategy:

Metal substitution

Optimization:

---

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

---

Notes:

Computational study of the reaction mechanism of the formation of HCOOH from CO2

Enantioselective Transfer Hydrogenation of Ketone Catalysed by Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

34

ee:

26

PDB:

---

Notes:

---

Immobilization of Two Organometallic Complexes into a Single Cage to Construct Protein-Based Microcompartment

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Apo-ferritin

Anchoring strategy:

Dative

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

~2

ee:

15

PDB:

5E2D

Notes:

Tandem reaction (Hydrogenation and Suzuki-Miyaura coupling) to form biphenylethanol from 4-iodoacetophenone and phenylboronic acid. TON and ee are given for the tandem reaction product.

Metal:

Pd

Ligand type:

Allyl; Amino acid

Host protein:

Apo-ferritin

Anchoring strategy:

Dative

Optimization:

Chemical

Max TON:

~1

ee:

15

PDB:

5E2D

Notes:

Tandem reaction (Hydrogenation and Suzuki-Miyaura coupling) to form biphenylethanol from 4-iodoacetophenone and phenylboronic acid.

Lipase Active Site Covalent Anchoring of Rh(NHC) Catalysts: Towards Chemoselective Artificial Metalloenzymes

Metal:

Rh

Ligand type:

Carbene

Host protein:

Cutinase

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Hydrogenation

Max TON:

20

ee:

rac.

PDB:

1CEX

Notes:

---

Metal:

Rh

Ligand type:

Carbene

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Hydrogenation

Max TON:

20

ee:

rac.

PDB:

1CEX

Notes:

---

Merging Homogeneous Catalysis with Biocatalysis; Papain as Hydrogenation Catalyst

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Hydrogenation

Max TON:

400

ee:

<10

PDB:

---

Notes:

---

Metal-Conjugated Affinity Labels: A New Concept to Create Enantioselective Artificial Metalloenzymes

Metal:

Rh

Ligand type:

Cp*; Phosphine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

89

ee:

64

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Benzene; Phosphine

Host protein:

Bromelain

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

44

ee:

20

PDB:

---

Notes:

---

Second Generation Artificial Hydrogenases Based on the Biotin- Avidin Technology: Improving Activity, Stability and Selectivity by Introduction of Enantiopure Amino Acid Spacers

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

95

PDB:

---

Notes:

---

Second-Generation Artificial Hydrogenases Based on the Biotin-Avidin Technology: Improving Selectivity and Organic Solvent Tolerance by Introduction of an (R)-Proline Spacer

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

---

Stereoselective Hydrogenation of Olefins Using Rhodium-Substituted Carbonic Anhydrase—A New Reductase

Metal:

Rh

Ligand type:

COD

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

Hydrogenation

Max TON:

15.8

ee:

---

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

COD

Anchoring strategy:

Metal substitution

Optimization:

Genetic

Reaction:

Hydrogenation

Max TON:

80.5

ee:

---

PDB:

Notes:

PDB ID 4CAC = Structure of Zn containing hCAII

Synthesis of Hybrid Transition-Metalloproteins via Thiol-Selective Covalent Anchoring of Rh-Phosphine and Ru-Phenanthroline Complexes

Metal:

Rh

Ligand type:

COD; Phosphine

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Hydrogenation

Max TON:

---

ee:

---

PDB:

2PHY

Notes:

---

Tailoring the Active Site of Chemzymes by Using a Chemogenetic-Optimization Procedure: Towards Substrate-Specific Artificial Hydrogenases Based on the Biotin–Avidin Technology

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

---

Towards the Directed Evolution of Hybrid Catalysts

Metal:

Mn

Ligand type:

Salen

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Epoxidation

Max TON:

---

ee:

< 10

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Dipyridin-2-ylmethane

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Hydrogenation

Max TON:

---

ee:

< 10

PDB:

---

Notes:

---