2 publications
-
An Artificial Metalloenzyme for Catalytic Cancer-Specific DNA Cleavage and Operando Imaging
-
Sci. Adv. 2020, 6, 10.1126/sciadv.abb1421
Metalloenzymes are promising anticancer candidates to overcome chemoresistance by involving unique mechanisms. To date, it is still a great challenge to obtain synthetic metalloenzymes with persistent catalytic performance for cancer-specific DNA cleavage and operando imaging. Here, an artificial metalloenzyme, copper cluster firmly anchored in bovine serum albumin conjugated with tumor-targeting peptide, is exquisitely constructed. It is capable of persistently transforming hydrogen peroxide in tumor microenvironment to hydroxyl radical and oxygen in a catalytic manner. The stable catalysis recycling stems from the electron transfer between copper cluster and substrate with well-matched energy levels. Notably, their high biocompatibility, tumor-specific recognition, and persistent catalytic performance ensure the substantial anticancer efficacy by triggering DNA damage. Meanwhile, by coupling with enzyme-like reactions, the operando therapy effect is expediently traced by chemiluminescence signal with high sensitivity and sustainability. It provides new insights into synthesizing biocompatible metalloenzymes on demand to visually monitor and efficiently combat specific cancers.
Metal: CuLigand type: Copper clusterHost protein: Bovine serum albumin (BSA)Anchoring strategy: DativeOptimization: ChemicalNotes: ---
-
Regulating Transition Metal Catalysis Through Interference by Short RNAs
-
Angew. Chem. Int. Ed. 2019, 58, 16400-16404, 10.1002/anie.201905333
Herein we report the discovery of a AuI–DNA hybrid catalyst that is compatible with biological media and whose reactivity can be regulated by small complementary nucleic acid sequences. The development of this catalytic system was enabled by the discovery of a novel AuI‐mediated base pair. We found that AuI binds DNA containing C‐T mismatches. In the AuI–DNA catalyst's latent state, the AuI ion is sequestered by the mismatch such that it is coordinatively saturated, rendering it catalytically inactive. Upon addition of an RNA or DNA strand that is complementary to the latent catalyst's oligonucleotide backbone, catalytic activity is induced, leading to a sevenfold increase in the formation of a fluorescent product, forged through a AuI‐catalyzed hydroamination reaction. Further development of this catalytic system will expand not only the chemical space available to synthetic biological systems but also allow for temporal and spatial control of transition‐metal catalysis through gene transcription.
Notes: ---