26 publications

26 publications

An Artificial Heme Enzyme for Cyclopropanation Reactions

Roelfes, G.

Angew. Chem. Int. Ed. 2018, 57, 7785-7789, 10.1002/anie.201802946

An artificial heme enzyme was created through self‐assembly from hemin and the lactococcal multidrug resistance regulator (LmrR). The crystal structure shows the heme bound inside the hydrophobic pore of the protein, where it appears inaccessible for substrates. However, good catalytic activity and moderate enantioselectivity was observed in an abiological cyclopropanation reaction. We propose that the dynamic nature of the structure of the LmrR protein is key to the observed activity. This was supported by molecular dynamics simulations, which showed transient formation of opened conformations that allow the binding of substrates and the formation of pre‐catalytic structures.


Metal: Fe
Ligand type: Protoporphyrin IX
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Cyclopropanation
Max TON: 449
ee: 51
PDB: 6FUU
Notes: ---

An Enantioselective Artificial Metallo-Hydratase

Roelfes, G.

Chem. Sci. 2013, 4, 3578, 10.1039/c3sc51449h

Direct addition of water to alkenes to generate important chiral alcohols as key motif in a variety of natural products still remains a challenge in organic chemistry. Here, we report the first enantioselective artificial metallo-hydratase, based on the transcription factor LmrR, which catalyses the conjugate addition of water to generate chiral β-hydroxy ketones with enantioselectivities up to 84% ee. A mutagenesis study revealed that an aspartic acid and a phenylalanine located in the active site play a key role in achieving efficient catalysis and high enantioselectivities.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 30
ee: 84
PDB: 3F8B
Notes: ---

An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades

Ward, T.R.

J. Am. Chem. Soc. 2016, 138, 5781-5784, 10.1021/jacs.6b02470

Enzymes typically depend on either NAD(P)H or FADH2 as hydride source for reduction purposes. In contrast, organometallic catalysts most often rely on isopropanol or formate to generate the reactive hydride moiety. Here we show that incorporation of a Cp*Ir cofactor possessing a biotin moiety and 4,7-dihydroxy-1,10-phenanthroline into streptavidin yields an NAD(P)H-dependent artificial transfer hydrogenase (ATHase). This ATHase (0.1 mol%) catalyzes imine reduction with 1 mM NADPH (2 mol%), which can be concurrently regenerated by a glucose dehydrogenase (GDH) using only 1.2 equiv of glucose. A four-enzyme cascade consisting of the ATHase, the GDH, a monoamine oxidase, and a catalase leads to the production of enantiopure amines.


Metal: Ir
Ligand type: Cp*; Phenanthroline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: >999
ee: >99
PDB: ---
Notes: ---

A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold

Green, A.P.; Hilvert, D.

J. Am. Chem. Soc. 2018, 140, 1535-1543, 10.1021/jacs.7b12621

Expanding the range of genetically encoded metal coordination environments accessible within tunable protein scaffolds presents excellent opportunities for the creation of metalloenzymes with augmented properties and novel activities. Here, we demonstrate that installation of a noncanonical Nδ-methyl histidine (NMH) as the proximal heme ligand in the oxygen binding protein myoglobin (Mb) leads to substantial increases in heme redox potential and promiscuous peroxidase activity. Structural characterization of this catalytically modified myoglobin variant (Mb NMH) revealed significant changes in the proximal pocket, including alterations to hydrogen-bonding interactions involving the prosthetic porphyrin cofactor. Further optimization of Mb NMH via a combination of rational modification and several rounds of laboratory evolution afforded efficient peroxidase biocatalysts within a globin fold, with activities comparable to those displayed by nature’s peroxidases.


Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Oxidation
Max TON: ~1650
ee: ---
PDB: 5OJ9
Notes: Oxidation of amplex red

Artificial Copper Enzymes for Asymmetric Diels–AlderReactions

Kamer, P.C.J.; Laan, W.

ChemCatChem 2013, 5, 1184-1191, 10.1002/cctc.201200671

The development of artificial copper enzymes from sterol carrier protein type 2 like domain (SCP‐2L) for the use in asymmetric catalysis was explored. For this purpose, proteins were modified with various nitrogen donor ligands. Maleimide‐containing ligands were found most suitable for selective cysteine bio‐conjugation. Fluorescence spectroscopy was used to confirm copper binding to an introduced phenanthroline ligand, which was introduced in two unique cysteine containing SCP‐2L mutants. Copper adducts of several modified SCP‐2L templates were applied in asymmetric Diels–Alder reactions. A clear influence of both the protein environment and the introduced ligand was found in the asymmetric Diels–Alder reaction between azachalcone and cyclopentadiene. A promising enantioselectivity of 25 % ee was obtained by using SCP‐2L V83C modified with phenanthroline–maleimide ligand. Good endo selectivity was observed for SCP‐2L modified with the dipicolylamine‐based nitrogen donor ligand. These artificial metalloenzymes provide a suitable starting point for the implementation of various available techniques to optimise the performance of this system.


Metal: Cu
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Max TON: 9.6
ee: 25
PDB: 1IKT
Notes: ---

Artificial Metalloenzymes based on Protein Cavities: Exploring the Effect of Altering the Metal Ligand Attachment Position by Site Directed Mutagenesis

Distefano, M.D.

Bioorg. Med. Chem. Lett. 1999, 9, 79-84, 10.1016/S0960-894X(98)00684-2

In an effort to construct catalysts with enzyme-like properties, we are employing a small, cavity-containing protein as a scaffold for the attachment of catalytic groups. In earlier work we demonstrated that a phenanthroline ligand could be introduced into the cavity of the protein ALBP and used to catalyze ester hydrolysis. To examine the effect of positioning the phenanthroline catalyst at different locations wthin the protein cavity, three new constucts — Phen60, Phen72 and Phen104 — were prepared. Each new conjugate was characterized by UV/vis spectroscopy, fluorescence spectroscopy, guanidine hydrochloride denaturation, gel filtration chromatography, and CD spectroscopy to confirm the preparation of the desired contruct. Analysis of reactions containing Ala-OiPr showed that Phen60 catalyzed ester hydrolysis with less selectivity than ALBP-Phen while Phen72 promoted this same reaction with higher selectivity. Reactions with Tyr-OMe were catalyzed with higher selectivity by Phen60 and more rapidly by Phen104. These results demonstrate that both the rates and selectivities of hydrolysis reactions catalyzed by these constructs are dependent on the precise site of attachment of the metal ligand within the protein cavity.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 1 to 4
ee: 61 to 94
PDB: ---
Notes: Varied attachment position

Artificial Metalloenzymes with the Neocarzinostatin Scaffold: Toward a Biocatalyst for the Diels–Alder Reaction

Mahy, J.-P.; Ricoux, R.

ChemBioChem 2016, 17, 433-440, 10.1002/cbic.201500445

A new artificial enzyme formed by associating NCS‐3.24 with a copper complex catalyzed the Diels–Alder cyclization of cyclopentadiene with 2‐azachalcone and led to an increase in the formation of the exo‐products. Molecular modeling proposed the preferred relative positioning of both the Trojan horse complex and the two substrates.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: 33
ee: ---
PDB: ---
Notes: Up to endo/exo ratio 62:38

A Semisynthetic Metalloenzyme based on a Protein Cavity that Catalyzes the Enantioselective Hydrolysis of Ester and Amide Substrates

Distefano, M.D.

J. Am. Chem. Soc. 1997, 119, 11643-11652, 10.1021/JA970820K

In an effort to prepare selective and efficient catalysts for ester and amide hydrolysis, we are designing systems that position a coordinated metal ion within a defined protein cavity. Here, the preparation of a protein-1,10-phenanthroline conjugate and the hydrolytic chemistry catalyzed by this construct are described. Iodoacetamido-1,10-phenanthroline was used to modify a unique cysteine residue in ALBP (adipocyte lipid binding protein) to produce the conjugate ALBP-Phen. The resulting material was characterized by electrospray mass spectrometry, UV/vis and fluorescence spectroscopy, gel filtration chromatography, and thiol titration. The stability of ALBP-Phen was evaluated by guanidine hydrochloride denaturation experiments, and the ability of the conjugate to bind Cu(II) was demonstrated by fluorescence spectroscopy. ALBP-Phen-Cu(II) catalyzes the enantioselective hydrolysis of several unactivated amino acid esters under mild conditions (pH 6.1, 25 °C) at rates 32−280-fold above the background rate in buffered aqueous solution. In 24 h incubations 0.70 to 7.6 turnovers were observed with enantiomeric excesses ranging from 31% ee to 86% ee. ALBP-Phen-Cu(II) also promotes the hydrolysis of an aryl amide substrate under more vigorous conditions (pH 6.1, 37 °C) at a rate 1.6 × 104-fold above the background rate. The kinetics of this amide hydrolysis reaction fit the Michaelis−Menten relationship characteristic of enzymatic processes. The rate enhancements for ester and amide hydrolysis reported here are 102−103 lower than those observed for free Cu(II) but comparable to those previously reported for Cu(II) complexes.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: ---
Max TON: 1 to 8
ee: 39 to 86
PDB: ---
Notes: ---

Asymmetric Catalytic Sulfoxidation by a Novel VIV8 Cluster Catalyst in the Presence of Serum Albumin: A Simple and Green Oxidation System

Bian, H.-D.; Huang, F.-P.

RSC Adv. 2016, 6, 44154-44162, 10.1039/C6RA08153C

Enantioselective oxidation of a series of alkyl aryl sulfides catalyzed by a novel VIV8 cluster is tested in an aqueous medium in the presence of serum albumin. The procedure is simple, environmentally friendly, selective, and highly reactive.


Metal: V
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 140
ee: 77
PDB: ---
Notes: Screening with different serum albumins.

Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes

Ward, T.R.

J. Am. Chem. Soc. 2019, 141, 15869-15878, 10.1021/jacs.9b06923

The biotin–streptavidin technology has been extensively exploited to engineer artificial metalloenzymes (ArMs) that catalyze a dozen different reactions. Despite its versatility, the homotetrameric nature of streptavidin (Sav) and the noncooperative binding of biotinylated cofactors impose two limitations on the genetic optimization of ArMs: (i) point mutations are reflected in all four subunits of Sav, and (ii) the noncooperative binding of biotinylated cofactors to Sav may lead to an erosion in the catalytic performance, depending on the cofactor:biotin-binding site ratio. To address these challenges, we report on our efforts to engineer a (monovalent) single-chain dimeric streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility of scdSav as host protein is highlighted for the asymmetric transfer hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning of the biotin-binding vestibule, unrivaled levels of activity and selectivity were achieved for the reduction of challenging prochiral imines. Comparison of the saturation kinetic data and X-ray structures of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav highlights the advantages of the presence of a single biotinylated cofactor precisely localized within the biotin-binding vestibule of the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated for the reduction of the salsolidine precursor (500 mM) to afford (R)-salsolidine in 90% ee and >17 000 TONs. Monovalent scdSav thus provides a versatile scaffold to evolve more efficient ArMs for in vivo catalysis and large-scale applications.


Metal: Ir
Ligand type: Cp*; Phenanthroline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 17000
ee: 98
PDB: 6S4Q
Notes: Additional PDB: 6S50

Catalysis Without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation

Ménage, S.

J. Mol. Catal. A: Chem. 2016, 416, 20-28, 10.1016/j.molcata.2016.02.015

A new artificial oxidase has been developed for selective transformation of thioanisole. The catalytic activity of an iron inorganic complex, FeLibu, embedded in a transport protein NikA has been investigated in aqueous media. High efficiency (up to 1367 t), frequency 459 TON min−1 and selectivity (up to 69%) make this easy to use catalytic system an asset for a sustainable chemistry.


Metal: Fe
Ligand type: BPHMEN
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 1367
ee: ---
PDB: ---
Notes: ---

Chemical Conversion of a DNA-Binding Protein into a Site-Specific Nuclease

Sigman, D.S.

Science 1987, 237, 1197-1201, 10.1126/science.2820056

The tryptophan gene (trp) repressor of Escherichia coli has been converted into a site-specific nuclease by covalently attaching it to the 1,10-phenanthroline-copper complex. In its cuprous form, the coordination complex with hydrogen peroxide as a coreactant cleaves DNA by oxidatively attacking the deoxyribose moiety. The chemistry for the attachment of 1,10-phenanthroline to the trp repressor involves modification of lysyl residues with iminothiolane followed by alkylation of the resulting sulfhydryl groups with 5-iodoacetamido-1,10-phenanthroline. The modified trp repressor cleaves the operators of aroH and trpEDCBA upon the addition of cupric ion and thiol in a reaction dependent on the corepressor L-tryptophan. Scission was restricted to the binding site for the repressor, defined by deoxyribonuclease I footprinting. Since DNA-binding proteins have recognition sequences approximately 20 base pairs long, the nucleolytic activities derived from them could be used to isolate long DNA fragments for sequencing or chromosomal mapping.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: ---
Reaction: Oxidative cleavage
Max TON: <1
ee: ---
PDB: ---
Notes: Engineered sequence specificity

Conversion of a Helix-Turn-Helix Motif Sequence-Specific DNA Binding Protein into a Site-Specific DNA Cleavage Agent

Ebright, R.H.; Gunasekeram, A.

Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 2882-2886, 10.1073/pnas.87.8.2882

Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein [de Crombrugghe, B., Busby, S. & Buc, H. (1984) Science 224, 831-838; and Pabo, C. & Sauer, R. (1984) Annu. Rev. Biochem. 53, 293-321]. In this work, CAP has been converted into a site-specific DNA cleavage agent by incorporation of the chelator 1,10-phenanthroline at amino acid 10 of the helix-turn-helix motif. [(N-Acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP binds to a 22-base-pair DNA recognition site with Kobs = 1 x 10(8) M-1. In the presence of Cu(II) and reducing agent, [(N-acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP cleaves DNA at four adjacent nucleotides on each DNA strand within the DNA recognition site. The DNA cleavage reaction has been demonstrated using 40-base-pair and 7164-base-pair DNA substrates. The DNA cleavage reaction is not inhibited by dam methylation of the DNA substrate. Such semisynthetic site-specific DNA cleavage agents have potential applications in chromosome mapping, cloning, and sequencing.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: ---
Reaction: Oxidative cleavage
Max TON: <1
ee: ---
PDB: ---
Notes: Engineered sequence specificity

Cross-Regulation of an Artificial Metalloenzyme

Ward, T.R.

Angew. Chem. Int. Ed. 2017, 56, 10156-10160, 10.1002/anie.201702181

Cross‐regulation of complex biochemical reaction networks is an essential feature of living systems. In a biomimetic spirit, we report on our efforts to program the temporal activation of an artificial metalloenzyme via cross‐regulation by a natural enzyme. In the presence of urea, urease slowly releases ammonia that reversibly inhibits an artificial transfer hydrogenase. Addition of an acid, which acts as fuel, allows to maintain the system out of equilibrium.


Metal: Ir
Ligand type: Cp*; Phenanthroline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 96
ee: ---
PDB: ---
Notes: Cross-regulated reduction of the antibiotic enrofloxacin by an ArM.

Diversifying Metal–Ligand Cooperative Catalysis in Semi‐Synthetic [Mn]‐Hydrogenases

Hu, X.; Shima, S.

Angew. Chem. Int. Ed. 2021, 60, 13350-13357, 10.1002/anie.202100443

The reconstitution of [Mn]-hydrogenases using a series of MnI complexes is described. These complexes are designed to have an internal base or pro-base that may participate in metal–ligand cooperative catalysis or have no internal base or pro-base. Only MnI complexes with an internal base or pro-base are active for H2 activation; only [Mn]-hydrogenases incorporating such complexes are active for hydrogenase reactions. These results confirm the essential role of metal–ligand cooperation for H2 activation by the MnI complexes alone and by [Mn]-hydrogenases. Owing to the nature and position of the internal base or pro-base, the mode of metal–ligand cooperation in two active [Mn]-hydrogenases is different from that of the native [Fe]-hydrogenase. One [Mn]-hydrogenase has the highest specific activity of semi-synthetic [Mn]- and [Fe]-hydrogenases. This work demonstrates reconstitution of active artificial hydrogenases using synthetic complexes differing greatly from the native active site.


Metal: Mn
Ligand type: CO; Pyridone
Anchoring strategy: Reconstitution
Optimization: Chemical
Reaction: Hydrogenation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Electrochemical Characterization of the Artificial Metalloenzyme Papain-[(η6-arene)Ru(1,10-phenanthroline)Cl]+

Hromadová, M.

J. Electroanal. Chem. 2020, 859, 113882, 10.1016/j.jelechem.2020.113882

Electrochemical properties were studied for [(η6-arene)Ru(1,10-phenanthroline)Cl]Cl (arene = C6H5(CH2)2NHCOCH2Cl) organometallic complex 1, protein Papain PAP and its conjugate with organometallic complex 1-PAP. The latter can serve as an artificial metalloenzyme with catalytic activity in transfer hydrogenation. This work demonstrates that AC voltammetry and electrochemical impedance spectroscopy can be used as fast tools to screen the catalytic ability of 1-PAP electrochemically by studies of the catalytic hydrogen evolution reaction (HER). Proteins are known to catalyze this process, but we have shown that additional HER signal associated with the catalytic activity of 1 is observed for its conjugate with Papain 1-PAP.


Metal: Ru
Ligand type: Cp*; Phenanthroline
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: H2 evolution
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Enantioselective Artificial Metalloenzymes by Creation of a Novel Active Site at the Protein Dimer Interface

Roelfes, G.

Angew. Chem. Int. Ed. 2012, 51, 7472-7475, 10.1002/anie.201202070

A game of two halves: Artificial metalloenzymes are generated by forming a novel active site on the dimer interface of the transcription factor LmrR. Two copper centers are incorporated by binding to ligands in each half of the dimer. With this system up to 97 % ee was obtained in the benchmark CuII catalyzed Diels–Alder reaction (see scheme).


Metal: Cu
Ligand type: Bipyridine; Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 32.7
ee: 97
PDB: 3F8B
Notes: ---

In Vivo Assembly of Artificial Metalloenzymes and Application in Whole‐Cell Biocatalysis

Roelfes, G.

Angew. Chem. Int. Ed. 2021, 60, 5913-5920, 10.1002/anie.202014771

We report the supramolecular assembly of artificial metalloenzymes (ArMs), based on the Lactococcal multidrug resistance regulator (LmrR) and an exogeneous copper(II)–phenanthroline complex, in the cytoplasm of E. coli cells. A combination of catalysis, cell-fractionation, and inhibitor experiments, supplemented with in-cell solid-state NMR spectroscopy, confirmed the in-cell assembly. The ArM-containing whole cells were active in the catalysis of the enantioselective Friedel–Crafts alkylation of indoles and the Diels–Alder reaction of azachalcone with cyclopentadiene. Directed evolution resulted in two different improved mutants for both reactions, LmrR_A92E_M8D and LmrR_A92E_V15A, respectively. The whole-cell ArM system required no engineering of the microbial host, the protein scaffold, or the cofactor to achieve ArM assembly and catalysis. We consider this a key step towards integrating abiological catalysis with biosynthesis to generate a hybrid metabolism.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: ---
ee: 98
PDB: 3F8F
Notes: ---

Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: ---
ee: 84
PDB: 3F8F
Notes: ---

Photoinduced Electron Transfer within Supramolecular Hemoprotein Co-Assemblies and Heterodimers Containing Fe and Zn Porphyrins

Oohora, K.

J. Inorg. Biochem. 2019, 193, 42-51, 10.1016/j.jinorgbio.2019.01.001

Electron transfer (ET) events occurring within metalloprotein complexes are among the most important classes of reactions in biological systems. This report describes a photoinduced electron transfer between Zn porphyrin and Fe porphyrin within a supramolecular cytochrome b562 (Cyt b562) co-assembly or heterodimer with a well-defined rigid structure formed by a metalloporphyrin–heme pocket interaction and a hydrogen-bond network at the protein interface. The photoinduced charge separation (CS: kCS = 320–600 s−1) and subsequent charge recombination (CR: kCR = 580–930 s−1) were observed in both the Cyt b562 co-assembly and the heterodimer. In contrast, interestingly, no ET events were observed in a system comprised of a flexible and structurally-undefined co-assembly and heterodimers which lack the key hydrogen-bond interaction at the protein interface. Moreover, analysis of the kinetic constants of CS and CR of the heterodimer using the Marcus equation suggests that a single-step ET reaction occurs in the system. These findings provide strong support that the rigid hemoprotein-assembling system containing an appropriate hydrogen-bond network at the protein interface is essential for monitoring the ET reaction.


Metal: Fe; Zn
Ligand type: Protoporphyrin IX
Host protein: Cytochrome b562
Anchoring strategy: Cystein-maleimide; Supramolecular
Optimization: Chemical & genetic
Reaction: Electron transfer
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Piano-Stool d(6)-Rhodium(III) Complexes of Chelating Pyridine-Based Ligands and their Papain Bioconjugates for the Catalysis of Transfer Hydrogenation of Aryl Ketones in Aqueous Medium

Mangiatordi, G.F.; Salmain, M.

J. Mol. Catal. B: Enzym. 2015, 122, 314-322, 10.1016/j.molcatb.2015.10.007

Two half-sandwich d6-rhodium(III) complexes of the general formula [(η5-Cp*)Rh(N^N)Cl]Cl where N^N is a phenanthroline or a bispyridine methane derivative carrying a thiol-targeting maleimide or chloroacetamide function were synthesized and characterized. Both complexes were able to catalyse the transfer hydrogenation of 2,2,2-trifluoroacetophenone in aqueous medium using formate or phosphite as hydrogen donor. Covalent anchoring of these complexes to the cysteine endoproteinase papain yielded hybrid metalloproteins with transfer hydrogenase properties. Under optimized conditions of pH, hydrogen donor concentration and catalyst load, conversion of substrate was nearly quantitative within 24 h at 40 °C and the (S)-enantiomer was obtained preferably albeit with a modest enantiomeric excess of 7–10%. Covalent docking simulations complemented the experimental findings suggesting a molecular rationale for the observed low enantioselectivity. The harmonious use of experimental and theoretical approaches represents an unprecedented starting point for driving the rational design of artificial metalloenzymes built up from papain with higher catalytic efficiency.


Metal: Rh
Ligand type: Cp*; Phenanthroline
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Max TON: 30
ee: 9
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Cp*; Di(2-pyridyl)
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Max TON: 20
ee: 5
PDB: ---
Notes: ---

Rational Design of an Artificial Nuclease by Engineering a Hetero-Dinuclear Center of Mg-Heme in Myoglobin

Lin, Y.-W.

ACS Catal. 2020, 10, 14359-14365, 10.1021/acscatal.0c04572

Design of artificial nucleases is essential in biotechnology and biomedicine, whereas few artificial nucleases can both cleave and degrade DNA molecules. Heme proteins are potential enzymes for DNA cleavage. Using a small heme protein, myoglobin (Mb), as a model protein, we engineered a metal-binding motif of [1-His-1-Glu] (native His64 and mutated Glu29) in the heme distal site. The single mutant of L29E Mb was capable of not only efficient DNA cleavage but also DNA degradation upon Mg2+ binding to the heme distal site, as shown by an X-ray crystal structure of the Mg2+-L29E Mb complex. Molecular docking of the protein–DNA complex revealed multiple hydrogen-bonding interactions at their interfaces, involving both minor and major grooves of DNA. Moreover, both the distal Arg45 and the ligand Glu29 were identified as critical residues for the nuclease activity. This study reports the structure of a water-bridged heterodinuclear center of Mg-heme (Mg2+-H2O-Fe3+), showing a similar function as the homodinuclear center (MgA2+-H2O–MgB2+) in natural nuclease, which indicates that the Mg2+-L29E Mb complex is an effective artificial nuclease.


Metal: Fe; Mg
Ligand type: Protoporphyrin IX
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 7CEN
Notes: ---

Receptor-Based Artificial Metalloenzymes on Living Human Cells

Ghattas, W.; Mahy, J.-P.

J. Am. Chem. Soc. 2018, 140, 8756-8762, 10.1021/jacs.8b04326

Artificial metalloenzymes are known to be promising tools for biocatalysis, but their recent compartmentalization has led to compatibly with cell components thus shedding light on possible therapeutic applications. We prepared and characterized artificial metalloenzymes based on the A2A adenosine receptor embedded in the cytoplasmic membranes of living human cells. The wild type receptor was chemically engineered into metalloenzymes by its association with strong antagonists that were covalently bound to copper(II) catalysts. The resulting cells enantioselectively catalyzed the abiotic Diels–Alder cycloaddition reaction of cyclopentadiene and azachalcone. The prospects of this strategy lie in the organ-confined in vivo preparation of receptor-based artificial metalloenzymes for the catalysis of reactions exogenous to the human metabolism. These could be used for the targeted synthesis of either drugs or deficient metabolites and for the activation of prodrugs, leading to therapeutic tools with unforeseen applications.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 24
ee: 35
PDB: ---
Notes: ---

Sequence-Specific Peptide Cleavage Catalyzed by an Antibody

Lerner, R.A.

Science 1989, 243, 1184-1188, 10.1126/science.2922606

Monoclonal antibodies have been induced that are capable of catalyzing specific hydrolysis of the Gly-Phe bond of peptide substrates at neutral pH with a metal complex cofactor. The antibodies were produced by immunizing with a Co(III) triethylenetetramine (trien)-peptide hapten. These antibodies as a group are capable of binding trien complexes of not only Co(III) but also of numerous other metals. Six peptides were examined as possible substrates with the antibodies and various metal complexes. Two of these peptides were cleaved by several of the antibodies. One antibody was studied in detail, and cleavage was observed for the substrates with the trien complexes of Zn(II), Ga(III), Fe(III), In(III), Cu(II), Ni(II), Lu(III), Mg(II), or Mn(II) as cofactors. A turnover number of 6 x 10(-4) per second was observed for these substrates. These results demonstrate the feasibility of the use of cofactor-assisted catalysis in an antibody binding site to accomplish difficult chemical transformations.


Metal: Zn
Ligand type: Tetramine
Host protein: Antibody 28F11
Anchoring strategy: Supramolecular
Optimization: Chemical
Max TON: 400
ee: ---
PDB: ---
Notes: ---

Supramolecular Assembly of Artificial Metalloenzymes Based on the Dimeric Protein LmrR as Promiscuous Scaffold

Roelfes, G.

J. Am. Chem. Soc. 2015, 137, 9796-9799, 10.1021/jacs.5b05790

Supramolecular anchoring of transition metal complexes to a protein scaffold is an attractive approach to the construction of artificial metalloenzymes since this is conveniently achieved by self-assembly. Here, we report a novel design for supramolecular artificial metalloenzymes that exploits the promiscuity of the central hydrophobic cavity of the transcription factor Lactococcal multidrug resistance Regulator (LmrR) as a generic binding site for planar coordination complexes that do not provide specific protein binding interactions. The success of this approach is manifested in the excellent enantioselectivities that are achieved in the Cu(II) catalyzed enantioselective Friedel–Crafts alkylation of indoles.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 11.1
ee: 94
PDB: 3F8B
Notes: ---

Synthesis of a Heterogeneous Artificial Metallolipase with Chimeric Catalytic Activity

Filice, M.

Chem. Commun. 2015, 51, 9324-9327, 10.1039/C5CC02450A

A solid-phase strategy using lipase as a biomolecular scaffold to produce a large amount of Cu2+-metalloenzyme is proposed here. The application of this protocol on different 3D cavities of the enzyme allows creating a heterogeneous artificial metallolipase showing chimeric catalytic activity. The artificial catalyst was assessed in Diels–Alder cycloaddition reactions and cascade reactions showing excellent catalytic properties.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 411
ee: 92
PDB: ---
Notes: ArM is immobilized on Sepabeads. Endo/exo = 93.5%

Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Reduction
Max TON: ---
ee: ---
PDB: ---
Notes: Cascade reaction: Ester hydrolysis (natural function of the host protein) followed by reduction (function of the designed ArM).

(η6-Arene) Ruthenium(II) Complexes and Metallo-Papain Hybrid as Lewis Acid Catalysts of Diels–Alder Reaction in Water

Salmain, M.

Dalton Trans. 2010, 39, 5605, 10.1039/c001630f

Covalent embedding of a (η6-arene) ruthenium(II) complex into the protein papain gives rise to a metalloenzyme displaying a catalytic efficiency for a Lewis acid-mediated catalysed Diels–Alder reaction enhanced by two orders of magnitude in water.


Metal: Ru
Ligand type: Benzene; Phenanthroline
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Max TON: 440
ee: ---
PDB: ---
Notes: TOF = 220 h-1