3 publications
-
A Designed Heme-[4Fe-4S] Metalloenzyme Catalyzes Sulfite Reduction like the Native Enzyme
-
Science 2018, 361, 1098-1101, 10.1126/science.aat8474
Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved—through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites—to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.
Metal: FeHost protein: Cytochrome c peroxidaseAnchoring strategy: DativeOptimization: Chemical & geneticNotes: Designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase
-
A Hydroxyquinoline‐Based Unnatural Amino Acid for the Design of Novel Artificial Metalloenzymes
-
ChemBioChem 2020, 21, 3077-3081, 10.1002/cbic.202000306
We have examined the potential of the noncanonical amino acid (8-hydroxyquinolin-3-yl)alanine (HQAla) for the design of artificial metalloenzymes. HQAla, a versatile chelator of late transition metals, was introduced into the lactococcal multidrug-resistance regulator (LmrR) by stop codon suppression methodology. LmrR_HQAla was shown to complex efficiently with three different metal ions, CuII, ZnII and RhIII to form unique artificial metalloenzymes. The catalytic potential of the CuII-bound LmrR_HQAla enzyme was shown through its ability to catalyse asymmetric Friedel-Craft alkylation and water addition, whereas the ZnII-coupled enzyme was shown to mimic natural Zn hydrolase activity.
Metal: CuLigand type: HydroxyquinolineHost protein: Lactoccal multidrug resistant regulator (LmrR)Anchoring strategy: SupramolecularOptimization: GeneticNotes: Also used Rh, but no reaction detected.
Metal: CuLigand type: HydroxyquinolineHost protein: Lactoccal multidrug resistant regulator (LmrR)Anchoring strategy: SupramolecularOptimization: GeneticNotes: ---
Metal: ZnLigand type: HydroxyquinolineHost protein: Lactoccal multidrug resistant regulator (LmrR)Anchoring strategy: SupramolecularOptimization: GeneticNotes: ---
-
Histidine orientation in artificial peroxidase regioisomers as determined by paramagnetic NMR shifts
-
Chem. Commun. 2021, 57, 990-993, 10.1039/d0cc06676a
Fe-Mimochrome VI*a is a synthetic peroxidase and peroxygenase, featuring two different peptides that are covalently-linked to deuteroheme. To perform a systematic structure/function correlation, we purposely shortened the distance between the distal peptide and the heme, allowing for the separation and characterization of two regioisomers. They differ in both His axial-ligand orientation, as determined by paramagnetic NMR shifts, and activity. These findings highlight that synthetic metalloenzymes may provide an efficient tool for disentangling the role of axial ligand orientation over peroxidase activity.
Metal: FeLigand type: Deuteroporphyrin IXHost protein: Synthetic peptideAnchoring strategy: CovalentOptimization: ---Notes: NMR studies of the complexes, no catalysis