1 publication

1 publication

A Hydroxyquinoline‐Based Unnatural Amino Acid for the Design of Novel Artificial Metalloenzymes

Roelfes, G.

ChemBioChem 2020, 21, 3077-3081, 10.1002/cbic.202000306

We have examined the potential of the noncanonical amino acid (8-hydroxyquinolin-3-yl)alanine (HQAla) for the design of artificial metalloenzymes. HQAla, a versatile chelator of late transition metals, was introduced into the lactococcal multidrug-resistance regulator (LmrR) by stop codon suppression methodology. LmrR_HQAla was shown to complex efficiently with three different metal ions, CuII, ZnII and RhIII to form unique artificial metalloenzymes. The catalytic potential of the CuII-bound LmrR_HQAla enzyme was shown through its ability to catalyse asymmetric Friedel-Craft alkylation and water addition, whereas the ZnII-coupled enzyme was shown to mimic natural Zn hydrolase activity.


Metal: Cu
Ligand type: Hydroxyquinoline
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 11
ee: 51
PDB: 3F8B
Notes: Also used Rh, but no reaction detected.

Metal: Cu
Ligand type: Hydroxyquinoline
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Water addition
Max TON: ---
ee: ---
PDB: 3F8B
Notes: ---

Metal: Zn
Ligand type: Hydroxyquinoline
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: C-H activation
Max TON: ---
ee: ---
PDB: 3F8B
Notes: ---