Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

21 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A Designed Functional Metalloenzyme that Reduces O2 to H2O with Over One Thousand Turnovers

Rational design of functional enzymes with a high number of turnovers is a challenge, especially those with a complex active site, such as respiratory oxidases. Introducing two His and one Tyr residues into myoglobin resulted in enzymes that reduce O2 to H2O with more than 1000 turnovers (red line, see scheme) and minimal release of reactive oxygen species. The positioning of the Tyr residue is critical for activity.

Metal:

Cu

Ligand type:

Amino acid

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

1056

ee:

---

PDB:

4FWX

Notes:

Sperm whale myoglobin

Alteration of the Oxygen-Dependent Reactivity of De Novo Due Ferri Proteins

De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N-hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 106-fold increase in the relative rate between the arylamine N-hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites.

Metal:

Fe

Ligand type:

Amino acid

Host protein:

Due Ferro 1

Anchoring strategy:

Dative

Optimization:

Genetic

Reaction:

N-Hydroxylation

Max TON:

---

ee:

---

PDB:

2LFD

Notes:

---

A Rhodium Complex-Linked β-Barrel Protein as a Hybrid Biocatalyst for Phenylacetylene Polymerization

Our group recently prepared a hybrid catalyst containing a rhodium complex, Rh(Cp)(cod), with a maleimide moiety at the peripheral position of the Cp ligand. This compound was then inserted into a β-barrel protein scaffold of a mutant of aponitrobindin (Q96C) via a covalent linkage. The hybrid protein is found to act as a polymerization catalyst and preferentially yields trans-poly(phenylacetylene) (PPA), although the rhodium complex without the protein scaffold normally produces cis PPA.

Metal:

Rh

Ligand type:

COD; Cp*

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Cystein-maleimide

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Artificial Copper Enzymes for Asymmetric Diels–AlderReactions

Metal:

Cu

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Max TON:

9.6

ee:

25

PDB:

1IKT

Notes:

---

Artificial Dicopper Oxidase: Rational Reprogramming of Bacterial Metallo- b-lactamase into a Catechol Oxidase

Metal:

Cu

Ligand type:

Amino acid

Host protein:

β-lactamase

Anchoring strategy:

Dative

Optimization:

Genetic

Reaction:

Catechol oxidation

Max TON:

---

ee:

---

PDB:

2FU7

Notes:

---

Artificial Enzymes Based on Supramolecular Scaffolds

Review

Notes:

---

Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions

Review

Notes:

---

Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation

Metal:

Rh

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

C-H activation

Max TON:

95

ee:

82

PDB:

---

Notes:

---

Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering

Metal:

Zn

Ligand type:

Amino acid

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

>50

ee:

---

PDB:

3V1C

Notes:

---

Computational Redesign of a Mononuclear Zinc Metalloenzyme for Organophosphate Hydrolysis

Metal:

Zn

Ligand type:

Amino acid

Anchoring strategy:

Dative

Optimization:

Genetic

Max TON:

>140

ee:

---

PDB:

3T1G

Notes:

kcat/KM ≈ 104 M-1*s-1

Creation of an Artificial Metalloprotein with a Hoveyda–Grubbs Catalyst Moiety through the Intrinsic Inhibition Mechanism of α-Chymotrypsin

Metal:

Ru

Ligand type:

Carbene

Host protein:

α-chymotrypsin

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Olefin metathesis

Max TON:

20

ee:

---

PDB:

---

Notes:

RCM

Crystal Structure of Two Anti-Porphyrin Antibodies with Peroxidase Activity

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 13G10

Anchoring strategy:

Antibody

Optimization:

Chemical & genetic

Reaction:

Peroxidation

Max TON:

---

ee:

---

PDB:

4AMK

Notes:

---

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 14H7

Anchoring strategy:

Antibody

Optimization:

Chemical & genetic

Reaction:

Peroxidation

Max TON:

---

ee:

---

PDB:

4AMK

Notes:

---

Design and Evolution of Artificial Metalloenzymes: Biomimetic Aspects

Review

Notes:

---

Designing a Functional Type 2 Copper Center that has Nitrite Reductase Activity Within α-Helical Coiled Coils

Metal:

Cu

Ligand type:

Amino acid

Host protein:

TRI peptide

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

>5

ee:

---

PDB:

---

Notes:

Nitrite reduction

Enantioselective Artificial Metalloenzymes by Creation of a Novel Active Site at the Protein Dimer Interface

Metal:

Cu

Ligand type:

Bipyridine; Phenanthroline

Host protein:

LmrR

Anchoring strategy:

Covalent

Optimization:

Genetic

Max TON:

32.7

ee:

97

PDB:

3F8B

Notes:

---

Enantioselective Transfer Hydrogenation of Ketone Catalysed by Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin

Metal:

Rh

Ligand type:

Cp*; Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

34

ee:

26

PDB:

---

Notes:

---

Incorporation of Manganese Complexes into Xylanase: New Artificial Metalloenzymes for Enantioselective Epoxidation

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

Xylanase A (XynA)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Epoxidation

Max TON:

21

ee:

80

PDB:

---

Notes:

---

Organometallic Chemistry in Protein Scaffolds

Review

Notes:

Book chapter

Semi-Synthesis of an Artificial Scandium(III) Enzyme with a β-Helical Bio-Nanotube

Metal:

Sc

Ligand type:

Bipyridine

Host protein:

[(gp5βf)3]2

Anchoring strategy:

Cystein-maleimide

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Significant Increase of Oxidase Activity through the Genetic Incorporation of a Tyrosine–Histidine Cross-Link in a Myoglobin Model of Heme–Copper Oxidase

Metal:

Cu

Ligand type:

Amino acid

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

1100

ee:

---

PDB:

---

Notes:

Sperm whale myoglobin

Structure and Dynamics of a Primordial Catalytic fold Generated by In Vitro Evolution

Metal:

Zn

Ligand type:

Amino acid

Anchoring strategy:

Dative

Optimization:

Genetic

Reaction:

RNA ligation

Max TON:

---

ee:

---

PDB:

2LZE

Notes:

---