19 publications

19 publications

A Designed Functional Metalloenzyme that Reduces O2 to H2O with Over One Thousand Turnovers

Lu, Y.

Angew. Chem. Int. Ed. 2012, 51, 5589-5592, 10.1002/anie.201201981

Rational design of functional enzymes with a high number of turnovers is a challenge, especially those with a complex active site, such as respiratory oxidases. Introducing two His and one Tyr residues into myoglobin resulted in enzymes that reduce O2 to H2O with more than 1000 turnovers (red line, see scheme) and minimal release of reactive oxygen species. The positioning of the Tyr residue is critical for activity.


Metal: Cu
Ligand type: Amino acid
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: 1056
ee: ---
PDB: 4FWX
Notes: Sperm whale myoglobin

Alteration of the Oxygen-Dependent Reactivity of De Novo Due Ferri Proteins

DeGrado, W.F.

Nat. Chem. 2012, 4, 900-906, 10.1038/NCHEM.1454

De novo proteins provide a unique opportunity to investigate the structure–function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N-hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 106-fold increase in the relative rate between the arylamine N-hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites.


Metal: Fe
Ligand type: Amino acid
Host protein: Due Ferri
Anchoring strategy: Dative
Optimization: Genetic
Reaction: N-Hydroxylation
Max TON: ---
ee: ---
PDB: 2LFD
Notes: ---

A Rhodium Complex-Linked β-Barrel Protein as a Hybrid Biocatalyst for Phenylacetylene Polymerization

Hayashi, T

Chem. Commun. 2012, 48, 9756, 10.1039/C2CC35165J

Our group recently prepared a hybrid catalyst containing a rhodium complex, Rh(Cp)(cod), with a maleimide moiety at the peripheral position of the Cp ligand. This compound was then inserted into a β-barrel protein scaffold of a mutant of aponitrobindin (Q96C) via a covalent linkage. The hybrid protein is found to act as a polymerization catalyst and preferentially yields trans-poly(phenylacetylene) (PPA), although the rhodium complex without the protein scaffold normally produces cis PPA.


Metal: Rh
Ligand type: COD; Cp*
Host protein: Nitrobindin (Nb)
Anchoring strategy: Cystein-maleimide
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Artificial Dicopper Oxidase: Rational Reprogramming of Bacterial Metallo- b-lactamase into a Catechol Oxidase

Fujieda, N.; Itoh, S.

Chem. - Asian J. 2012, 7, 1203-1207, 10.1002/asia.201101014

Teaching metalloenzymes new tricks: An artificial type III dicopper oxidase has been developed using a hydrolytic enzyme, metallo‐β‐lactamase, as a metal‐binding platform. The triple mutant D88G/S185H/P224G redesigned by computer‐assisted structural analysis showed spectroscopic features similar to those of type III copper proteins and exhibited a high catalytic activity in the oxidation of catechols under aerobic conditions.


Metal: Cu
Ligand type: Amino acid
Host protein: β-lactamase
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Catechol oxidation
Max TON: ---
ee: ---
PDB: 2FU7
Notes: ---

Artificial Enzymes Based on Supramolecular Scaffolds

Review

Liu, J.

Chem. Soc. Rev. 2012, 41, 7890, 10.1039/c2cs35207a

Enzymes are nanometer-sized molecules with three-dimensional structures created by the folding and self-assembly of polymeric chain-like components through supramolecular interactions. They are capable of performing catalytic functions usually accompanied by a variety of conformational states. The conformational diversities and complexities of natural enzymes exerted in catalysis seriously restrict the detailed understanding of enzymatic mechanisms in molecular terms. A supramolecular viewpoint is undoubtedly helpful in understanding the principle of enzyme catalysis. The emergence of supramolecular artificial enzymes therefore provides an alternative way to approach the structural complexity and thus to unravel the mystery of enzyme catalysis. This critical review covers the recent development of artificial enzymes designed based on supramolecular scaffolds ranging from the synthetic macrocycles to self-assembled nanometer-sized objects. Such findings are anticipated to facilitate the design of supramolecular artificial enzymes as well as their potential uses in important fields, such as manufacturing and food industries, environmental biosensors, pharmaceutics and so on.


Notes: ---

Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions

Review

Reetz, M.T.

Chem. Rec. 2012, 12, 391-406, 10.1002/tcr.201100043

Numerous enzymes are useful catalysts in synthetic organic chemistry, but they cannot catalyze the myriad transition‐metal‐mediated transformations customary in daily chemical work. For this reason the concept of directed evolution of hybrid catalysts was proposed some time ago. A synthetic ligand/transition‐metal moiety is anchored covalently or non‐covalently to a host protein, thereby generating a single artificial metalloenzyme which can then be optimized by molecular biological methods. In the quest to construct an appropriate experimental platform for asymmetric Diels–Alder reactions amenable to this Darwinian approach to catalysis, specifically those not currently possible using traditional chiral transition‐metal catalysts, two strategies have been developed which are reviewed here. One concerns the supramolecular anchoring of a Cu(II)‐phthalocyanine complex to serum albumins; the other is based on the design of a Cu(II)‐specific binding site in a thermostable protein host (tHisF), leading to 46–98% ee in a model Diels–Alder reaction. This sets the stage for genetic fine‐tuning using the methods of directed evolution.


Notes: ---

Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation

Rovis, T.; Ward, T.R.

Science 2012, 338, 500-503, 10.1126/science.1226132

Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C–H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.


Metal: Rh
Ligand type: Amino acid; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: C-H activation
Max TON: 95
ee: 82
PDB: ---
Notes: ---

Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering

Kuhlman, B.

Biochemistry 2012, 51, 3933-3940, 10.1021/bi201881p

Here we show that a recent computationally designed zinc-mediated protein interface is serendipitously capable of catalyzing carboxyester and phosphoester hydrolysis. Although the original motivation was to design a de novo zinc-mediated protein–protein interaction (called MID1-zinc), we observed in the homodimer crystal structure a small cleft and open zinc coordination site. We investigated if the cleft and zinc site at the designed interface were sufficient for formation of a primitive active site that can perform hydrolysis. MID1-zinc hydrolyzes 4-nitrophenyl acetate with a rate acceleration of 105 and a kcat/KM of 630 M–1 s–1 and 4-nitrophenyl phosphate with a rate acceleration of 104 and a kcat/KM of 14 M–1 s–1. These rate accelerations by an unoptimized active site highlight the catalytic power of zinc and suggest that the clefts formed by protein–protein interactions are well-suited for creating enzyme active sites. This discovery has implications for protein evolution and engineering: from an evolutionary perspective, three-coordinated zinc at a homodimer interface cleft represents a simple evolutionary path to nascent enzymatic activity; from a protein engineering perspective, future efforts in de novo design of enzyme active sites may benefit from exploring clefts at protein interfaces for active site placement.


Metal: Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: >50
ee: ---
PDB: 3V1C
Notes: ---

Computational Redesign of a Mononuclear Zinc Metalloenzyme for Organophosphate Hydrolysis

Baker, D.

Nat. Chem. Biol. 2012, 8, 294-300, 10.1038/NChemBio.777

The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency (kcat/Km) of ∼104 M−1 s−1 after directed evolution. In the high-resolution crystal structure of the enzyme, all but one of the designed residues adopt the designed conformation. The designed enzyme efficiently catalyzes the hydrolysis of the RP isomer of a coumarinyl analog of the nerve agent cyclosarin, and it shows marked substrate selectivity for coumarinyl leaving groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a general approach for exploring their untapped catalytic potential for new reactivities.


Metal: Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Max TON: >140
ee: ---
PDB: 3T1G
Notes: kcat/KM ≈ 104 M-1*s-1

Creation of an Artificial Metalloprotein with a Hoveyda–Grubbs Catalyst Moiety through the Intrinsic Inhibition Mechanism of α-Chymotrypsin

Chem. Commun. 2012, 48, 1662, 10.1039/c2cc16898g

An L-phenylalanyl chloromethylketone-based inhibitor equipped with a Hoveyda–Grubbs catalyst moiety was regioselectively incorporated into the cleft of α-chymotrypsin through the intrinsic inhibition mechanism of the protein to construct an artificial organometallic protein.


Metal: Ru
Ligand type: Carbene
Host protein: α-chymotrypsin
Anchoring strategy: Covalent
Optimization: ---
Reaction: Olefin metathesis
Max TON: 20
ee: ---
PDB: ---
Notes: RCM

Crystal Structure of Two Anti-Porphyrin Antibodies with Peroxidase Activity

Golinelli-Pimpaneau, B.

PLoS One 2012, 7, e51128, 10.1371/journal.pone.0051128

We report the crystal structures at 2.05 and 2.45 Å resolution of two antibodies, 13G10 and 14H7, directed against an iron(III)-αααβ-carboxyphenylporphyrin, which display some peroxidase activity. Although these two antibodies differ by only one amino acid in their variable λ-light chain and display 86% sequence identity in their variable heavy chain, their complementary determining regions (CDR) CDRH1 and CDRH3 adopt very different conformations. The presence of Met or Leu residues at positions preceding residue H101 in CDRH3 in 13G10 and 14H7, respectively, yields to shallow combining sites pockets with different shapes that are mainly hydrophobic. The hapten and other carboxyphenyl-derivatized iron(III)-porphyrins have been modeled in the active sites of both antibodies using protein ligand docking with the program GOLD. The hapten is maintained in the antibody pockets of 13G10 and 14H7 by a strong network of hydrogen bonds with two or three carboxylates of the carboxyphenyl substituents of the porphyrin, respectively, as well as numerous stacking and van der Waals interactions with the very hydrophobic CDRH3. However, no amino acid residue was found to chelate the iron. Modeling also allows us to rationalize the recognition of alternative porphyrinic cofactors by the 13G10 and 14H7 antibodies and the effect of imidazole binding on the peroxidase activity of the 13G10/porphyrin complexes.


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 13G10
Anchoring strategy: Antibody
Optimization: Chemical & genetic
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: 4AMK
Notes: ---

Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 14H7
Anchoring strategy: Antibody
Optimization: Chemical & genetic
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: 4AT6
Notes: ---

Designing a Functional Type 2 Copper Center that has Nitrite Reductase Activity Within α-Helical Coiled Coils

Pecoraro, V.L.

Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 21234-21239, 10.1073/pnas.1212893110

One of the ultimate objectives of de novo protein design is to realize systems capable of catalyzing redox reactions on substrates. This goal is challenging as redox-active proteins require design considerations for both the reduced and oxidized states of the protein. In this paper, we describe the spectroscopic characterization and catalytic activity of a de novo designed metallopeptide Cu(I/II)(TRIL23H)3+/2+, where Cu(I/II) is embeded in α-helical coiled coils, as a model for the CuT2 center of copper nitrite reductase. In Cu(I/II)(TRIL23H)3+/2+, Cu(I) is coordinated to three histidines, as indicated by X-ray absorption data, and Cu(II) to three histidines and one or two water molecules. Both ions are bound in the interior of the three-stranded coiled coils with affinities that range from nano- to micromolar [Cu(II)], and picomolar [Cu(I)]. The Cu(His)3 active site is characterized in both oxidation states, revealing similarities to the CuT2 site in the natural enzyme. The species Cu(II)(TRIL23H)32+ in aqueous solution can be reduced to Cu(I)(TRIL23H)3+ using ascorbate, and reoxidized by nitrite with production of nitric oxide. At pH 5.8, with an excess of both the reductant (ascorbate) and the substrate (nitrite), the copper peptide Cu(II)(TRIL23H)32+ acts as a catalyst for the reduction of nitrite with at least five turnovers and no loss of catalytic efficiency after 3.7 h. The catalytic activity, which is first order in the concentration of the peptide, also shows a pH dependence that is described and discussed.


Metal: Cu
Ligand type: Amino acid
Host protein: TRI peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: >5
ee: ---
PDB: ---
Notes: Nitrite reduction

Enantioselective Artificial Metalloenzymes by Creation of a Novel Active Site at the Protein Dimer Interface

Roelfes, G.

Angew. Chem. Int. Ed. 2012, 51, 7472-7475, 10.1002/anie.201202070

A game of two halves: Artificial metalloenzymes are generated by forming a novel active site on the dimer interface of the transcription factor LmrR. Two copper centers are incorporated by binding to ligands in each half of the dimer. With this system up to 97 % ee was obtained in the benchmark CuII catalyzed Diels–Alder reaction (see scheme).


Metal: Cu
Ligand type: Bipyridine; Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 32.7
ee: 97
PDB: 3F8B
Notes: ---

Enantioselective Transfer Hydrogenation of Ketone Catalysed by Artificial Metalloenzymes Derived from Bovine β-Lactoglobulin

Salmain, M.

Chem. Commun. 2012, 48, 11984, 10.1039/c2cc36980j

Artificial metalloproteins resulting from the embedding of half-sandwich Ru(II)/Rh(III) fatty acid derivatives within β-lactoglobulin catalysed the asymmetric transfer hydrogenation of trifluoroacetophenone with modest to good conversions and fair ee's.


Metal: Rh
Ligand type: Cp*; Poly-pyridine
Host protein: ß-lactoglobulin
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Hydrogenation
Max TON: 34
ee: 26
PDB: ---
Notes: ---

Hydrolytic Catalysis and Structural Stabilization in a Designed Metalloprotein

Pecoraro, V.L.

Nat. Chem. 2012, 4, 118-123, 10.1038/NCHEM.1201

Metal ions are an important part of many natural proteins, providing structural, catalytic and electron transfer functions. Reproducing these functions in a designed protein is the ultimate challenge to our understanding of them. Here, we present an artificial metallohydrolase, which has been shown by X-ray crystallography to contain two different metal ions—a Zn(II) ion, which is important for catalytic activity, and a Hg(II) ion, which provides structural stability. This metallohydrolase displays catalytic activity that compares well with several characteristic reactions of natural enzymes. It catalyses p-nitrophenyl acetate (pNPA) hydrolysis with an efficiency only ~100-fold less than that of human carbonic anhydrase (CA)II and at least 550-fold better than comparable synthetic complexes. Similarly, CO2 hydration occurs with an efficiency within ~500-fold of CAII. Although histidine residues in the absence of Zn(II) exhibit pNPA hydrolysis, miniscule apopeptide activity is observed for CO2 hydration. The kinetic and structural analysis of this first de novo designed hydrolytic metalloenzyme reveals necessary design features for future metalloenzymes containing one or more metals.


Metal: Hg; Zn
Ligand type: Amino acid
Host protein: TRI peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: >10
ee: ---
PDB: 3PBJ
Notes: Zn ion for catalytic activity, Hg ion for structural stability of the ArM. PDB ID 3PBJ = Structure of an analogue.

Metal: Hg; Zn
Ligand type: Amino acid
Host protein: TRI peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 3PBJ
Notes: Zn ion for catalytic activity, Hg ion for structural stability of the ArM, kcat/KM ≈ 1.8*105 M-1*s-1. PDB ID 3PBJ = Structure of an analogue.

Incorporation of Manganese Complexes into Xylanase: New Artificial Metalloenzymes for Enantioselective Epoxidation

Mahy, J.-P.; Ricoux, R.

ChemBioChem 2012, 13, 240-251, 10.1002/cbic.201100659

Enantioselective epoxidation: An artificial metalloenzyme obtained by noncovalent insertion of MnIII‐meso‐tetrakis(para‐carboxyphenyl)porphyrin Mn(TpCPP) into xylanase 10A from Streptomyces lividans as a host protein was able to catalyse the oxidation of para‐methoxystyrene by KHSO5 with a 16 % yield and the best enantioselectivity (80 % in favour of the R isomer) ever reported for an artificial metalloenzyme.


Metal: Mn
Ligand type: Porphyrin
Host protein: Xylanase A (XynA)
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Epoxidation
Max TON: 21
ee: 80
PDB: ---
Notes: ---

Organometallic Chemistry in Protein Scaffolds

Review

Ward, T.R.

Protein Engineering Handbook 2012, n/a

n/a


Notes: Book chapter; ISBN: 978-3-527-33123-9

Semi-Synthesis of an Artificial Scandium(III) Enzyme with a β-Helical Bio-Nanotube

Ueno, T.

Dalton Trans. 2012, 41, 11424, 10.1039/C2DT31030A

We have succeeded in preparing semi-synthesized proteins bound to Sc3+ ion which can promote an epoxide ring-opening reaction. The Sc3+ binding site was created on the surface of [(gp5βf)3]2 (N. Yokoi et al., Small, 2010, 6, 1873) by introducing a cysteine residue for conjugation of a bpy moiety using a thiol–maleimide coupling reaction. Three cysteine mutants [(gp5βf_X)3]2 (X = G18C, L47C, N51C) were prepared to introduce a bpy in different positions because it had been reported that Sc3+ ion can serve as a Lewis-acid catalyst for an epoxide ring-opening reaction upon binding of epoxide to bpy and two –ROH groups. G18C_bpy with Sc3+ can accelerate the rate of catalysis of the epoxide ring-opening reaction and has the highest rate of conversion among the three mutants. The value is more than 20 times higher than that of the mixtures of [(gp5βf)3]2/2,2′-bipyridine and L-threonine/2,2′-bipyridine. The elevated activity was obtained by the cooperative effect of stabilizing the Sc3+ coordination and accumulation of substrates on the protein surface. Thus, we expect that the semi-synthetic approach can provide insights into new rational design of artificial metalloenzymes.


Metal: Sc
Ligand type: Bipyridine
Host protein: [(gp5βf)3]2
Anchoring strategy: Cystein-maleimide
Optimization: Genetic
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Significant Increase of Oxidase Activity through the Genetic Incorporation of a Tyrosine–Histidine Cross-Link in a Myoglobin Model of Heme–Copper Oxidase

Lu, Y.; Wang, J.

Angew. Chem. Int. Ed. 2012, 51, 4312-4316, 10.1002/anie.201108756

Top model: Heme–copper oxidase (HCO) contains a histidine–tyrosine cross‐link in its heme a3/CuB oxygen reduction center. A functional model of HCO was obtained through the genetic incorporation of the unnatural amino acid imiTyr, which mimics the Tyr–His cross‐link, and of the CuB site into myoglobin (see picture). Like HCO, this small soluble protein exhibits selective O2‐reduction activity while generating little reactive oxygen species.


Metal: Cu
Ligand type: Amino acid
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: 1100
ee: ---
PDB: ---
Notes: Sperm whale myoglobin