2 publications
-
A Chaperonin as Protein Nanoreactor for Atom-Transfer Radical Polymerization
-
Angew. Chem. Int. Ed. 2014, 53, 1443-1447, 10.1002/anie.201306798
The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom‐transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N‐isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein–catalyst conjugate only yielded polymers with PDIs above 1.84.
Metal: CuLigand type: N,N,N’,N’-tetraethyldiethylene triamine (TEDETA)Host protein: Thermosome (THS)Anchoring strategy: CovalentOptimization: ---Notes: Non-ROMP
-
Preparation of an Immobilized Lipase-Palladium Artificial Metalloenzyme as Catalyst in the Heck Reaction: Role of the Solid Phase
-
Adv. Synth. Catal. 2015, 357, 2687-2696, 10.1002/adsc.201500014
A p‐nitrophenylphosphonate palladium pincer was synthesized and selectively inserted by irreversible attachment on the catalytic serine of different commercial lipases with good to excellent yields in most cases. Among all, lipase from Candida antarctica B (CAL‐B) was the best modified enzyme. The artificial metalloenzyme CAL‐B‐palladium (Pd) catalyst was subsequently immobilized on different supports and by different orienting strategies. The catalytic properties of the immobilized hybrid catalysts were then evaluated in two sets of Heck cross‐coupling reactions under different conditions. In the first reaction between iodobenzene and ethyl acrylate, the covalent immobilized CAL‐B‐Pd catalyst resulted to be the best one exhibiting quantitative production of the Heck product at 70 °C in dimethylformamide (DMF) with 25% water and particularly in pure DMF, where the soluble Pd pincer was completely inactive. A post‐immobilization engineering of catalyst surface by its hydrophobization enhanced the activity. The selectivity properties of the best hybrid catalyst were then assessed in the asymmetric Heck cross‐coupling reaction between iodobenzene and 2,3‐dihydrofuran retrieving excellent results in terms of stereo‐ and enantioselectivity.
Metal: PdLigand type: Thioether (Pincer complex)Host protein: Lipase B from C. antarctica (CALB)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ArM is immobilized on Sepabeads.