54 publications
-
Abiological Catalysis by Artificial Haem Proteins Containing Noble Metals in Place of Iron
-
Nature 2016, 534, 534-537, 10.1038/nature17968
Enzymes that contain metal ions—that is, metalloenzymes—possess the reactivity of a transition metal centre and the potential of molecular evolution to modulate the reactivity and substrate-selectivity of the system1. By exploiting substrate promiscuity and protein engineering, the scope of reactions catalysed by native metalloenzymes has been expanded recently to include abiological transformations2,3. However, this strategy is limited by the inherent reactivity of metal centres in native metalloenzymes. To overcome this limitation, artificial metalloproteins have been created by incorporating complete, noble-metal complexes within proteins lacking native metal sites1,4,5. The interactions of the substrate with the protein in these systems are, however, distinct from those with the native protein because the metal complex occupies the substrate binding site. At the intersection of these approaches lies a third strategy, in which the native metal of a metalloenzyme is replaced with an abiological metal with reactivity different from that of the metal in a native protein6,7,8. This strategy could create artificial enzymes for abiological catalysis within the natural substrate binding site of an enzyme that can be subjected to directed evolution. Here we report the formal replacement of iron in Fe-porphyrin IX (Fe-PIX) proteins with abiological, noble metals to create enzymes that catalyse reactions not catalysed by native Fe-enzymes or other metalloenzymes9,10. In particular, we prepared modified myoglobins containing an Ir(Me) site that catalyse the functionalization of C–H bonds to form C–C bonds by carbene insertion and add carbenes to both β-substituted vinylarenes and unactivated aliphatic α-olefins. We conducted directed evolution of the Ir(Me)-myoglobin and generated mutants that form either enantiomer of the products of C–H insertion and catalyse the enantio- and diastereoselective cyclopropanation of unactivated olefins. The presented method of preparing artificial haem proteins containing abiological metal porphyrins sets the stage for the generation of artificial enzymes from innumerable combinations of PIX-protein scaffolds and unnatural metal cofactors to catalyse a wide range of abiological transformations.
Metal: IrHost protein: Myoglobin (Mb)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Myoglobin (Mb)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
-
A "Broad Spectrum" Carbene Transferase for Synthesis of Chiral α-Trifluoromethylated Organoborons
-
ACS Cent. Sci. 2019, 5, 206-208, 10.1021/acscentsci.9b00015
Directed evolution generated an enzyme for the enantioselective synthesis of α-trifluoromethylated organoborons—potentially attractive synthons for fluorinated compounds.
Metal: FeLigand type: PorphyrinHost protein: Cytochrome cAnchoring strategy: NativeOptimization: GeneticNotes: ---
-
A Clamp-Like Biohybrid Catalyst for DNA Oxidation
-
Nat. Chem. 2013, 5, 945-951, 10.1038/NCHEM.1752
In processive catalysis, a catalyst binds to a substrate and remains bound as it performs several consecutive reactions, as exemplified by DNA polymerases. Processivity is essential in nature and is often mediated by a clamp-like structure that physically tethers the catalyst to its (polymeric) template. In the case of the bacteriophage T4 replisome, a dedicated clamp protein acts as a processivity mediator by encircling DNA and subsequently recruiting its polymerase. Here we use this DNA-binding protein to construct a biohybrid catalyst. Conjugation of the clamp protein to a chemical catalyst with sequence-specific oxidation behaviour formed a catalytic clamp that can be loaded onto a DNA plasmid. The catalytic activity of the biohybrid catalyst was visualized using a procedure based on an atomic force microscopy method that detects and spatially locates oxidized sites in DNA. Varying the experimental conditions enabled switching between processive and distributive catalysis and influencing the sliding direction of this rotaxane-like catalyst.
-
A Designed Heme-[4Fe-4S] Metalloenzyme Catalyzes Sulfite Reduction like the Native Enzyme
-
Science 2018, 361, 1098-1101, 10.1126/science.aat8474
Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved—through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites—to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.
Metal: FeHost protein: Cytochrome c peroxidaseAnchoring strategy: DativeOptimization: Chemical & geneticNotes: Designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase
-
An Artificial Hemoprotein with Inducible Peroxidase‐ and Monooxygenase‐Like Activities
-
Chem. Eur. J. 2020, 26, 14929-14937, 10.1002/chem.202002434
A novel inducible artificial metalloenzyme obtained by covalent attachment of a manganese(III)-tetraphenylporphyrin (MnTPP) to the artificial bidomain repeat protein, (A3A3′)Y26C, is reported. The protein is part of the αRep family. The biohybrid was fully characterized by MALDI-ToF mass spectrometry, circular dichroism and UV/Vis spectroscopies. The peroxidase and monooxygenase activities were evaluated on the original and modified scaffolds including those that have a) an additional imidazole, b) a specific αRep bA3-2 that is known to induce the opening of the (A3A3′) interdomain region and c) a derivative of the αRep bA3-2 inducer extended with a His6-Tag (His6-bA3-2). Catalytic profiles are highly dependent on the presence of co-catalysts with the best activity obtained with His6-bA3-2. The entire mechanism was rationalized by an integrative molecular modeling study that includes protein–ligand docking and large-scale molecular dynamics. This constitutes the first example of an entirely artificial metalloenzyme with inducible peroxidase and monooxygenase activities, reminiscent of allosteric regulation of natural enzymatic pathways.
Metal: MnLigand type: PorphyrinHost protein: Artificial bidomain repeat protein, (A3A3′)Y26CAnchoring strategy: CovalentOptimization: ---Notes: ---
-
An Artificial Metalloenzyme with the Kinetics of Native Enzymes
-
Science 2016, 354, 102-106, 10.1126/science.aah4427
Natural enzymes contain highly evolved active sites that lead to fast rates and high selectivities. Although artificial metalloenzymes have been developed that catalyze abiological transformations with high stereoselectivity, the activities of these artificial enzymes are much lower than those of natural enzymes. Here, we report a reconstituted artificial metalloenzyme containing an iridium porphyrin that exhibits kinetic parameters similar to those of natural enzymes. In particular, variants of the P450 enzyme CYP119 containing iridium in place of iron catalyze insertions of carbenes into C–H bonds with up to 98% enantiomeric excess, 35,000 turnovers, and 2550 hours−1 turnover frequency. This activity leads to intramolecular carbene insertions into unactivated C–H bonds and intermolecular carbene insertions into C–H bonds. These results lift the restrictions on merging chemical catalysis and biocatalysis to create highly active, productive, and selective metalloenzymes for abiological reactions.
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
-
A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold
-
J. Am. Chem. Soc. 2018, 140, 1535-1543, 10.1021/jacs.7b12621
Expanding the range of genetically encoded metal coordination environments accessible within tunable protein scaffolds presents excellent opportunities for the creation of metalloenzymes with augmented properties and novel activities. Here, we demonstrate that installation of a noncanonical Nδ-methyl histidine (NMH) as the proximal heme ligand in the oxygen binding protein myoglobin (Mb) leads to substantial increases in heme redox potential and promiscuous peroxidase activity. Structural characterization of this catalytically modified myoglobin variant (Mb NMH) revealed significant changes in the proximal pocket, including alterations to hydrogen-bonding interactions involving the prosthetic porphyrin cofactor. Further optimization of Mb NMH via a combination of rational modification and several rounds of laboratory evolution afforded efficient peroxidase biocatalysts within a globin fold, with activities comparable to those displayed by nature’s peroxidases.
Metal: FeHost protein: Myoglobin (Mb)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Oxidation of amplex red
-
Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes
-
J. Am. Chem. Soc. 1999, 121, 8978-8982, 10.1021/ja990314q
An antibody−metalloporphyrin assembly that catalyzes the enantioselective oxidation of aromatic sulfides to sulfoxides is presented. Antibody SN37.4 was elicited against a water-soluble tin(IV) porphyrin containing an axial α-naphthoxy ligand. The catalytic assembly comprising antibody SN37.4 and a ruthenium(II) porphyrin cofactor exhibited typical enzyme characteristics, such as predetermined oxidant and substrate selectivity, enantioselective delivery of oxygen to the substrate, and Michaelis−Menten saturation kinetics. This assembly, which promotes a complex, multistep catalytic event, represents a close model of natural heme-dependent oxidation enzymes.
Metal: RuLigand type: PorphyrinHost protein: Antibody SN37.4Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
-
Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials
-
Int. J. Mol. Sci. 2018, 19, 2896, 10.3390/ijms19102896
Many efforts are continuously devoted to the construction of hybrid biomaterials for specific applications, by immobilizing enzymes on different types of surfaces and/or nanomaterials. In addition, advances in computational, molecular and structural biology have led to a variety of strategies for designing and engineering artificial enzymes with defined catalytic properties. Here, we report the conjugation of an artificial heme enzyme (MIMO) with lipoic acid (LA) as a building block for the development of gold-based biomaterials. We show that the artificial MIMO@LA can be successfully conjugated to gold nanoparticles or immobilized onto gold electrode surfaces, displaying quasi-reversible redox properties and peroxidase activity. The results of this work open interesting perspectives toward the development of new totally-synthetic catalytic biomaterials for application in biotechnology and biomedicine, expanding the range of the biomolecular component aside from traditional native enzymes.
Metal: FeHost protein: Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: Immobilization of the ArM on gold surfaces via a lipoic acid anchor.
-
Artificial Peroxidase-Like Hemoproteins Based on Antibodies Constructed from a Specifically Designed Ortho-Carboxy Substituted Tetraarylporphyrin Hapten and Exhibiting a High Affinity for Iron-Porphyrins
-
FEBS Lett. 1996, 395, 73-76, 10.1016/0014-5793(96)01006-X
In order to get catalytic antibodies modelling peroxidases BALB/c mice have been immunized with iron(III)α,α,α,β‐mesotetrakis‐orthocarboxyphenyl‐porphyrin (Fe(ToCPP))‐KLH conjugates. Monoclonal antibodies have been produced by the hybridoma technology. Three antibodies, 2 IgG, and 1 IgG2a, were found to bind both Fe(ToCPP) and the free base ToCPPH2 with similar binding constants. None of those antibodies was found to bind tetraphenylporphyrin. Those results suggest that the recognition of Fe(ToCPP) by the antibodies was mainly due to the binding of the carboxylate groups to some amino acid residues of the protein. True K d values of 2.9 × 10−9 M and 5.5 × 10−9 M have been determined for the two IgG1‐Fe(ToCPP) complexes. Those values are the best ones ever reported for iron‐porphyrin‐antibody complexes. UV‐vis. studies have shown that the two IgG1‐Fe(ToCPP) complexes were highspin hexacoordinate iron(III) complexes, with no amino acid residue binding the iron, whereas the IgG2α‐Fe(ToCPP) complex was a low‐spin hexacoordinate iron(III) complex with two strong ligands binding the iron atom. Both IgG1 ‐Fe(ToCPP) complexes were found to catalyze the oxidation of 2,2′‐azinobis (3ethylbenzothiazoline‐6‐sulfonic acid (ABTS) 5‐fold more efficiently than Fe(ToCPP) alone whereas the binding of IgG2a to this iron‐porphyrin had no effect on its catalytic activity. k cat values of 100 min−1 and 63 min−1 and k cat/K m. values of 105 M−1 s−1 and 119 M−1 s−1 have been found respectively for the two IgG1‐Fe(ToCPP) complexes.
Metal: FeLigand type: PorphyrinHost protein: Antibody 13G10Anchoring strategy: SupramolecularOptimization: ---Notes: kcat/KM = 105 M-1 * s-1
-
Assembly and Evolution of Artificial Metalloenzymes within E. coli Nissle 1917 for Enantioselective and Site-Selective Functionalization of C─H and C═C Bonds
-
J. Am. Chem. Soc. 2022, 144, 883-890, 10.1021/jacs.1c10975
The potential applications afforded by the generation and reactivity of artificial metalloenzymes (ArMs) in microorganisms are vast. We show that a non-pathogenic E. coli strain, Nissle 1917 (EcN), is a suitable host for the creation of ArMs from cytochrome P450s and artificial heme cofactors. An outer-membrane receptor in EcN transports an iridium porphyrin into the cell, and the Ir-CYP119 (CYP119 containing iridium porphyrin) assembled in vivo catalyzes carbene insertions into benzylic C–H bonds enantioselectively and site-selectively. The application of EcN as a whole-cell screening platform eliminates the need for laborious processing procedures, drastically increases the ease and throughput of screening, and accelerates the development of Ir-CYP119 with improved catalytic properties. Studies to identify the transport machinery suggest that a transporter different from the previously assumed ChuA receptor serves to usher the iridium porphyrin into the cytoplasm.
-
Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes
-
ACS Cent. Sci. 2017, 3, 302-308, 10.1021/acscentsci.6b00391
Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C–H bond. We postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiple modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, >70:1 dr, >75% yield, and ∼10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Together, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: Selectivity for cis product (cis/trans = 90:1)
-
Capture and Characterization of a Reactive Haem– Carbenoid Complex in an Artificial Metalloenzyme
-
Nat. Catal. 2018, 1, 578-584, 10.1038/s41929-018-0105-6
Non-canonical amino acid ligands are useful for fine-tuning the catalytic properties of metalloenzymes. Here, we show that recombinant replacement of the histidine ligand proximal to haem in myoglobin with Nδ-methylhistidine enhances the protein’s promiscuous carbene-transfer chemistry, enabling efficient styrene cyclopropanation in the absence of reductant, even under aerobic conditions. The increased electrophilicity of the modified Fe(iii) centre, combined with subtle structural adjustments at the active site, allows direct attack of ethyl diazoacetate to produce a reactive carbenoid adduct, which has an unusual bridging Fe(iii)–C–N(pyrrole) configuration as shown by X-ray crystallography. Quantum chemical calculations suggest that the bridged complex equilibrates with the more reactive end-on isomer, ensuring efficient cyclopropanation. These findings underscore the potential of non-canonical ligands for extending the capabilities of metalloenzymes by opening up new reaction pathways and facilitating the characterization of reactive species that would not otherwise accumulate.
Notes: Structure of the Mb*(NMH) haem-iron complex
Notes: Structure of the Mb*(NMH) haem-iron–carbenoid complex
-
Catalytic Reduction of NO to N2O by a Designed Heme Copper Center in Myoglobin: Implications for the Role of Metal Ions
-
J. Am. Chem. Soc. 2006, 128, 6766-6767, 10.1021/ja058822p
The effects of metal ions on the reduction of nitric oxide (NO) with a designed heme copper center in myoglobin (F43H/L29H sperm whale Mb, CuBMb) were investigated under reducing anaerobic conditions using UV−vis and EPR spectroscopic techniques as well as GC/MS. In the presence of Cu(I), catalytic reduction of NO to N2O by CuBMb was observed with turnover number of 2 mol NO·mol CuBMb-1·min-1, close to 3 mol NO·mol enzyme-1·min-1 reported for the ba3 oxidases from T. thermophilus. Formation of a His-heme-NO species was detected by UV−vis and EPR spectroscopy. In comparison to the EPR spectra of ferrous-CuBMb-NO in the absence of metal ions, the EPR spectra of ferrous-CuBMb-NO in the presence of Cu(I) showed less-resolved hyperfine splitting from the proximal histidine, probably due to weakening of the proximal His-heme bond. In the presence of Zn(II), formation of a five-coordinate ferrous-CuBMb-NO species, resulting from cleavage of the proximal heme Fe-His bond, was shown by UV−vis and EPR spectroscopic studies. The reduction of NO to N2O was not observed in the presence of Zn(II). Control experiments using wild-type myoglobin indicated no reduction of NO in the presence of either Cu(I) or Zn(II). These results suggest that both the identity and the oxidation state of the metal ion in the CuB center are important for NO reduction. A redox-active metal ion is required to deliver electrons, and a higher oxidation state is preferred to weaken the heme iron−proximal histidine toward a five-coordinate key intermediate in NO reduction.
Notes: Sperm whale myoglobin
-
Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme
-
ACS Catal. 2021, 11, 5079-5087, 10.1021/acscatal.1c00134
Directed evolution has helped enzyme engineering to remarkable successes in the past. A main challenge in directed evolution is to find the most suitable starting point, that is, an enzyme that allows maximum “evolvability”. Consisting of a synthetic cofactor embedded in a protein scaffold, artificial metalloenzymes (ArMs) are reminiscent of rough-hewn ancestral metalloproteins and thus could provide an evolutionarily clean slate. Here, we report the design and directed evolution of an ArM with peroxidase-like properties based on the nitrobindin variant, NB4. After identifying a suitable artificial metal cofactor, two rounds of directed evolution were sufficient to elevate the ArM’s activity to levels akin to those of some natural peroxidases (up to kcat = 14.1 s–1 and kcat/Km = 52,800 M–1 s–1). A substitution to arginine in the distal cofactor environment (position 76) was the key to boost the peroxidase activity. Molecular dynamics simulations reveal a remarkable flexibility in the distal site of the NB4 scaffold that is absent in the nitrobindin wildtype and which allows the unrestricted movement of the catalytically important Arg76. In addition to the oxidation of the common redox mediators (ABTS, syringaldehyde, and 2,6-dimethoxyphenol), the ArM proved efficient in the decolorization of three recalcitrant dyes (indigo carmine, reactive blue 19, and reactive black 5) and was amenable to several rounds of ArM recycling.
Metal: MnLigand type: PorphyrinHost protein: Nitrobindin (Nb)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: kcat = 14.1 s−1 and kcat/Km = 52,800 M−1 s −1
-
Chemoselective, Enzymatic C−H Bond Amination Catalyzed by a Cytochrome P450 Containing an Ir(Me)-PIX Cofactor
-
J. Am. Chem. Soc. 2017, 139, 1750-1753, 10.1021/jacs.6b11410
Cytochrome P450 enzymes have been engineered to catalyze abiological C–H bond amination reactions, but the yields of these reactions have been limited by low chemoselectivity for the amination of C–H bonds over competing reduction of the azide substrate to a sulfonamide. Here we report that P450s derived from a thermophilic organism and containing an iridium porphyrin cofactor (Ir(Me)-PIX) in place of the heme catalyze enantioselective intramolecular C−H bond amination reactions of sulfonyl azides. These reactions occur with chemoselectivity for insertion of the nitrene units into C−H bonds over reduction of the azides to the sulfonamides that is higher and with substrate scope that is broader than those of enzymes containing iron porphyrins. The products from C−H amination are formed in up to 98% yield and ∼300 TON. In one case, the enantiomeric excess reaches 95:5 er, and the reactions can occur with divergent site selectivity. The chemoselectivity for C–H bond amination is greater than 20:1 in all cases. Variants of the Ir(Me)-PIX CYP119 displaying these properties were identified rapidly by evaluating CYP119 mutants containing Ir(Me)-PIX in cell lysates, rather than as purified enzymes. This study sets the stage to discover suitable enzymes to catalyze challenging C–H amination reactions.
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
-
Construction and In Vivo Assembly of a Catalytically Proficient and Hyperthermostable De Novo Enzyme
-
Nat. Commun. 2017, 8, 10.1038/s41467-017-00541-4
Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.
Metal: FeLigand type: PorphyrinHost protein: C45 (c-type cytochrome maquette)Anchoring strategy: SupramolecularOptimization: GeneticNotes: Oxidation of 2,2′-azino-bis(3-ethylbenzothiazo-line-6-sulfonic acid (ABTS)
-
Coordination Chemistry of Iron(III)-Porphyrin-Antibody Complexes Influence on the Peroxidase Activity of the Axial Coordination of an Imidazole on the Iron Atom
-
Eur. J. Biochem. 2002, 269, 470-480, 10.1046/j.0014-2956.2001.02670.x
An artificial peroxidase‐like hemoprotein has been obtained by associating a monoclonal antibody, 13G10, and its iron(III)–α,α,α,β‐meso‐tetrakis(ortho‐carboxyphenyl)porphyrin [Fe(ToCPP)] hapten. In this antibody, about two‐thirds of the porphyrin moiety is inserted in the binding site, its ortho‐COOH substituents being recognized by amino‐acids of the protein, and a carboxylic acid side chain of the protein acts as a general acid base catalyst in the heterolytic cleavage of the O–O bond of H2O2, but no amino‐acid residue is acting as an axial ligand of the iron. We here show that the iron of 13G10–Fe(ToCPP) is able to bind, like that of free Fe(ToCPP), two small ligands such as CN–, but only one imidazole ligand, in contrast to to the iron(III) of␣Fe(ToCPP) that binds two. This phenomenon is general for a series of monosubstituted imidazoles, the 2‐ and 4‐alkyl‐substituted imidazoles being the best ligands, in agreement with the hydrophobic character of the antibody binding site. Complexes of antibody 13G10 with less hindered iron(III)–tetraarylporphyrins bearing only one [Fe(MoCPP)] or two meso‐[ortho‐carboxyphenyl] substituents [Fe(DoCPP)] also bind only one imidazole. Finally, peroxidase activity studies show that imidazole inhibits the peroxidase activity of 13G10–Fe(ToCPP) whereas it increases that of 13G10–Fe(DoCPP). This could be interpreted by the binding of the imidazole ligand on the iron atom which probably occurs in the case of 13G10–Fe(ToCPP) on the less hindered face of the porphyrin, close to the catalytic COOH residue, whereas in the case of 13G10–Fe(DoCPP) it can occur on the other face of the porphyrin. The 13G10–Fe(DoCPP)–imidazole complex thus constitutes a nice artificial peroxidase‐like hemoprotein, with the axial imidazole ligand of the iron mimicking the proximal histidine of peroxidases and a COOH side chain of the antibody acting as a general acid‐base catalyst like the distal histidine of peroxidases does.
Metal: FeLigand type: PorphyrinHost protein: Antibody 13G10Anchoring strategy: SupramolecularOptimization: ---Notes: kcat/KM = 15200 M-1 * s-1
-
Coordination Chemistry Studies and Peroxidase Activity of a New Artificial Metalloenzyme Built by the “Trojan Horse” Strategy
-
J. Mol. Catal. A: Chem. 2010, 317, 19-26, 10.1016/j.molcata.2009.10.016
In the general context of green chemistry, a considerable research effort is devoted to the elaboration of new artificial metalloproteins that catalyze, under mild conditions, the oxidation of a wide range of organic compounds, using cheap and environmentally friendly oxidants. A new artificial hemoprotein was obtained by the so-called “Trojan horse” strategy involving the non-covalent insertion of a cationic iron–porphyrin–estradiol cofactor into an anti-estradiol antibody. UV–vis titrations showed the formation of a 1/2 antibody/cofactor complex with a dissociation constant KD = 4.10−7 M. UV–vis determination of the Fe-imidazole binding constants showed that the protein provided a weak steric hindrance around the iron–porphyrin cofactor. The antibody–estradiol–iron–porphyrin complex displayed a peroxidase activity and catalyzed the oxidation of ABTS by H2O2 with about double the efficiency of the iron–porphyrin–estradiol alone. Kinetic studies revealed that this was due to a faster formation of the intermediate high valent iron–oxo species in the presence of the antibody protein. Consequently, the association of an anti-estradiol antibody with an iron–porphyrin–estradiol cofactor leads to a new artificial hemoprotein with an interesting peroxidase activity and the “Trojan horse” strategy appears as a valuable method to generate artificial metalloenzymes that could act as biocatalysts for selective oxidations.
Metal: FeLigand type: PorphyrinHost protein: Antibody 7A3Anchoring strategy: SupramolecularOptimization: ---Notes: k1 = 574 M-1 * min-1
-
Crystal Structure of Two Anti-Porphyrin Antibodies with Peroxidase Activity
-
PLoS One 2012, 7, e51128, 10.1371/journal.pone.0051128
We report the crystal structures at 2.05 and 2.45 Å resolution of two antibodies, 13G10 and 14H7, directed against an iron(III)-αααβ-carboxyphenylporphyrin, which display some peroxidase activity. Although these two antibodies differ by only one amino acid in their variable λ-light chain and display 86% sequence identity in their variable heavy chain, their complementary determining regions (CDR) CDRH1 and CDRH3 adopt very different conformations. The presence of Met or Leu residues at positions preceding residue H101 in CDRH3 in 13G10 and 14H7, respectively, yields to shallow combining sites pockets with different shapes that are mainly hydrophobic. The hapten and other carboxyphenyl-derivatized iron(III)-porphyrins have been modeled in the active sites of both antibodies using protein ligand docking with the program GOLD. The hapten is maintained in the antibody pockets of 13G10 and 14H7 by a strong network of hydrogen bonds with two or three carboxylates of the carboxyphenyl substituents of the porphyrin, respectively, as well as numerous stacking and van der Waals interactions with the very hydrophobic CDRH3. However, no amino acid residue was found to chelate the iron. Modeling also allows us to rationalize the recognition of alternative porphyrinic cofactors by the 13G10 and 14H7 antibodies and the effect of imidazole binding on the peroxidase activity of the 13G10/porphyrin complexes.
Metal: FeLigand type: PorphyrinHost protein: Antibody 13G10Anchoring strategy: AntibodyOptimization: Chemical & geneticNotes: ---
Metal: FeLigand type: PorphyrinHost protein: Antibody 14H7Anchoring strategy: AntibodyOptimization: Chemical & geneticNotes: ---
-
Defining the Role of Tyrosine and Rational Tuning of Oxidase Activity by Genetic Incorporation of Unnatural Tyrosine Analogs
-
J. Am. Chem. Soc. 2015, 137, 4594-4597, 10.1021/ja5109936
While a conserved tyrosine (Tyr) is found in oxidases, the roles of phenol ring pKa and reduction potential in O2 reduction have not been defined despite many years of research on numerous oxidases and their models. These issues represent major challenges in our understanding of O2 reduction mechanism in bioenergetics. Through genetic incorporation of unnatural amino acid analogs of Tyr, with progressively decreasing pKa of the phenol ring and increasing reduction potential, in the active site of a functional model of oxidase in myoglobin, a linear dependence of both the O2 reduction activity and the fraction of H2O formation with the pKa of the phenol ring has been established. By using these unnatural amino acids as spectroscopic probe, we have provided conclusive evidence for the location of a Tyr radical generated during reaction with H2O2, by the distinctive hyperfine splitting patterns of the halogenated tyrosines and one of its deuterated derivatives incorporated at the 33 position of the protein. These results demonstrate for the first time that enhancing the proton donation ability of the Tyr enhances the oxidase activity, allowing the Tyr analogs to augment enzymatic activity beyond that of natural Tyr.
Metal: CuLigand type: PorphyrinHost protein: Myoglobin (Mb)Anchoring strategy: DativeOptimization: Chemical & geneticNotes: Sperm whale myoglobin
-
De Novo Design, Solution Characterization, and Crystallographic Structure of an Abiological Mn–Porphyrin-Binding Protein Capable of Stabilizing a Mn(V) Species
-
J. Am. Chem. Soc. 2021, 143, 252-259, 10.1021/jacs.0c10136
De novo protein design offers the opportunity to test our understanding of how metalloproteins perform difficult transformations. Attaining high-resolution structural information is critical to understanding how such designs function. There have been many successes in the design of porphyrin-binding proteins; however, crystallographic characterization has been elusive, limiting what can be learned from such studies as well as the extension to new functions. Moreover, formation of highly oxidizing high-valent intermediates poses design challenges that have not been previously implemented: (1) purposeful design of substrate/oxidant access to the binding site and (2) limiting deleterious oxidation of the protein scaffold. Here we report the first crystallographically characterized porphyrin-binding protein that was programmed to not only bind a synthetic Mn–porphyrin but also maintain binding site access to form high-valent oxidation states. We explicitly designed a binding site with accessibility to dioxygen units in the open coordination site of the Mn center. In solution, the protein is capable of accessing a high-valent Mn(V)–oxo species which can transfer an O atom to a thioether substrate. The crystallographic structure is within 0.6 Å of the design and indeed contained an aquo ligand with a second water molecule stabilized by hydrogen bonding to a Gln side chain in the active site, offering a structural explanation for the observed reactivity.
Metal: MnLigand type: PorphyrinHost protein: Manganese Porphyrin-binding Protein 1Anchoring strategy: CovalentOptimization: ---Notes: ---
-
Enantioselective Olefin Cyclopropanation with G-Quadruplex DNA-Based Biocatalysts
-
ACS Catal. 2020, 10, 6561-6567, 10.1021/acscatal.0c01203
Developing high-performance DNA-based biocatalysts for desired stereoselective syntheses remains a formidable challenge. Here, we report promising DNA-based catalysts comprised of G-quadruplex (G4) and Fe porphyrin for asymmetric olefin cyclopropanation. After the G4-based catalysts are optimized by several rounds of site mutation, their catalytic enantioselectivities achieve +81% and −86% enantiomeric excess (eetrans) at a turnover number (TON) as high as 500. The Fe porphyrin, binding upon the 5′,3′-end G-quartet, constitutes the active center for olefin cyclopropanation via an iron porphyrin carbene intermediate. The findings provide an opportunity for generating high-value chiral cyclopropane blocks via G4 biocatalysts and shed light on the potential of DNA as protein enzymes for catalysis.
Metal: FeLigand type: PorphyrinHost protein: DNAAnchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Enzyme stabilization via computationally guided protein stapling
-
Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 12472-12477, 10.1073/pnas.1708907114
Thermostabilization represents a critical and often obligatory step toward enhancing the robustness of enzymes for organic synthesis and other applications. While directed evolution methods have provided valuable tools for this purpose, these protocols are laborious and time-consuming and typically require the accumulation of several mutations, potentially at the expense of catalytic function. Here, we report a minimally invasive strategy for enzyme stabilization that relies on the installation of genetically encoded, nonreducible covalent staples in a target protein scaffold using computational design. This methodology enables the rapid development of myoglobin-based cyclopropanation biocatalysts featuring dramatically enhanced thermostability (ΔTm = +18.0 °C and ΔT50 = +16.0 °C) as well as increased stability against chemical denaturation [ΔCm (GndHCl) = 0.53 M], without altering their catalytic efficiency and stereoselectivity properties. In addition, the stabilized variants offer superior performance and selectivity compared with the parent enzyme in the presence of a high concentration of organic cosolvents, enabling the more efficient cyclopropanation of a water-insoluble substrate. This work introduces and validates an approach for protein stabilization which should be applicable to a variety of other proteins and enzymes.
Metal: FeLigand type: PorphyrinHost protein: Myoglobin (Mb)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Stapling of protein via thioether bond formation between the noncanonical amino acid O-2-bromoethyl tyrosine and cysteine
-
Flavohemoglobin: A Semisynthetic Hydroxylase Acting in the Absence of Reductase
-
J. Am. Chem. Soc. 1987, 109, 606-607, 10.1021/ja00236a062
n/a
Notes: ---
-
Helichrome: Synthesis and Enzymatic Activity of a Designed Hemeprotein
-
J. Am. Chem. Soc. 1989, 111, 380-381, 10.1021/ja00183a065
n/a
Metal: FeLigand type: PorphyrinHost protein: Artificial constructAnchoring strategy: CovalentOptimization: ---Notes: Only 60 amino acids
-
Hemoabzymes: Towards New Biocatalysts for Selective Oxidations
-
J. Immunol. Methods 2002, 269, 39-57, 10.1016/S0022-1759(02)00223-5
Catalytic antibodies with a metalloporphyrin cofactor or «hemoabzymes», used as models for hemoproteins like peroxidases and cytochrome P450, represent a promising route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that until now, the first strategy for obtaining such artificial hemoproteins has been to produce antiporphyrin antibodies, raised against various free-base, N-substituted Sn-, Pd- or Fe-porphyrins. Five of them exhibited, in the presence of the corresponding Fe-porphyrin cofactor, a significant peroxidase activity, with kcat/Km values of 3.7×103–2.9×105 M−1 min−1. This value remained, however, low when compared to that of peroxidases. This strategy has also led to a few models of cytochrome P450. The best of them, raised against a water-soluble tin(IV) porphyrin containing an axial α-naphtoxy ligand, was reported to catalyze the stereoselective oxidation of aromatic sulfides by iodosyl benzene using a Ru(II)-porphyrin cofactor. The relatively low efficiency of the porphyrin–antibody complexes is probably due, at least in part, to the fact that no proximal ligand of Fe has been induced in those antibodies. We then proposed to use, as a hapten, microperoxidase 8 (MP8), a heme octapeptide in which the imidazole side chain of histidine 18 acts as a proximal ligand of the iron atom. This led to the production of seven antibodies recognizing MP8, the best of them, 3A3, binding it with an apparent binding constant of 10−7 M. The corresponding 3A3–MP8 complex was found to have a good peroxidase activity characterized by a kcat/Km value of 2×106 M−1 min−1, which constitutes the best one ever reported for an antibody–porphyrin complex. Active site topology studies suggest that the binding of MP8 occurs through interactions of its carboxylate substituents with amino acids of the antibody and that the protein brings a partial steric hindrance of the distal face of the heme of MP8. Consequently, the use of the 3A3–MP8 complexes for the selective oxidation of substrates, such as sulfides, alkanes and alkenes will be undertaken in the future.
Metal: FeLigand type: PorphyrinHost protein: Antibody 3A3Anchoring strategy: SupramolecularOptimization: ---Notes: kcat/KM = 33000 M-1 * s-1
-
Hemozymes Peroxidase Activity Of Artificial Hemoproteins Constructed From the Streptomyces Lividans Xylanase A and Iron(III)-Carboxy-Substituted Porphyrins
-
Bioconjug. Chem. 2008, 19, 899-910, 10.1021/bc700435a
To develop artificial hemoproteins that could lead to new selective oxidation biocatalysts, a strategy based on the insertion of various iron-porphyrin cofactors into Xylanase A (Xln10A) was chosen. This protein has a globally positive charge and a wide enough active site to accommodate metalloporphyrins that possess negatively charged substituents such as microperoxidase 8 (MP8), iron(III)-tetra-α4-ortho-carboxyphenylporphyrin (Fe(ToCPP)), and iron(III)-tetra-para-carboxyphenylporphyrin (Fe(TpCPP)). Coordination chemistry of the iron atom and molecular modeling studies showed that only Fe(TpCPP) was able to insert deeply into Xln10A, with a KD value of about 0.5 µM. Accordingly, Fe(TpCPP)-Xln10A bound only one imidazole molecule, whereas Fe(TpCPP) free in solution was able to bind two, and the UV–visible spectrum of the Fe(TpCPP)-Xln10A-imidazole complex suggested the binding of an amino acid of the protein on the iron atom, trans to the imidazole. Fe(TpCPP)-Xln10A was found to have peroxidase activity, as it was able to catalyze the oxidation of typical peroxidase cosubstrates such as guaiacol and o-dianisidine by H2O2. With these two cosubstrates, the KM value measured with the Fe(TpCPP)-Xln10A complex was higher than those values observed with free Fe(TpCPP), probably because of the steric hindrance and the increased hydrophobicity caused by the protein around the iron atom of the porphyrin. The peroxidase activity was inhibited by imidazole, and a study of the pH dependence of the oxidation of o-dianisidine suggested that an amino acid with a pKA of around 7.5 was participating in the catalysis. Finally, a very interesting protective effect against oxidative degradation of the porphyrin was provided by the protein.
Metal: FeLigand type: PorphyrinHost protein: Xylanase A (XynA)Anchoring strategy: SupramolecularOptimization: ---Notes: kcat/KM = 1083 M-1 * s-1
-
Incorporation of Manganese Complexes into Xylanase: New Artificial Metalloenzymes for Enantioselective Epoxidation
-
ChemBioChem 2012, 13, 240-251, 10.1002/cbic.201100659
Enantioselective epoxidation: An artificial metalloenzyme obtained by noncovalent insertion of MnIII‐meso‐tetrakis(para‐carboxyphenyl)porphyrin Mn(TpCPP) into xylanase 10A from Streptomyces lividans as a host protein was able to catalyse the oxidation of para‐methoxystyrene by KHSO5 with a 16 % yield and the best enantioselectivity (80 % in favour of the R isomer) ever reported for an artificial metalloenzyme.
Metal: MnLigand type: PorphyrinHost protein: Xylanase A (XynA)Anchoring strategy: SupramolecularOptimization: ---Notes: ---
-
Intramolecular C(sp3)-H Amination of Arylsulfonyl Azides with Engineered and Artificial Myoglobin-Based Catalysts
-
Bioorg. Med. Chem. 2014, 22, 5697-5704, 10.1016/j.bmc.2014.05.015
The direct conversion of aliphatic CH bonds into CN bonds provides an attractive approach to the introduction of nitrogen-containing functionalities in organic molecules. Following the recent discovery that cytochrome P450 enzymes can catalyze the cyclization of arylsulfonyl azide compounds via an intramolecular C(sp3)H amination reaction, we have explored here the CH amination reactivity of other hemoproteins. Various heme-containing proteins, and in particular myoglobin and horseradish peroxidase, were found to be capable of catalyzing this transformation. Based on this finding, a series of engineered and artificial myoglobin variants containing active site mutations and non-native Mn- and Co-protoporphyrin IX cofactors, respectively, were prepared to investigate the effect of these structural changes on the catalytic activity and selectivity of these catalysts. Our studies showed that metallo-substituted myoglobins constitute viable CH amination catalysts, revealing a distinctive reactivity trend as compared to synthetic metalloporphyrin counterparts. On the other hand, amino acid substitutions at the level of the heme pocket were found to be beneficial toward improving the stereo- and enantioselectivity of these Mb-catalyzed reactions. Mechanistic studies involving kinetic isotope effect experiments indicate that CH bond cleavage is implicated in the rate-limiting step of myoglobin-catalyzed amination of arylsulfonyl azides. Altogether, these studies indicate that myoglobin constitutes a promising scaffold for the design and development of CH amination catalysts.
Metal: MnHost protein: Myoglobin (Mb)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---