2 publications
-
Design of an Enantioselective Artificial Metallo-Hydratase Enzyme Containing an Unnatural Metal-Binding Amino Acid
-
Chem. Sci. 2017, 8, 7228-7235, 10.1039/C7SC03477F
The design of artificial metalloenzymes is a challenging, yet ultimately highly rewarding objective because of the potential for accessing new-to-nature reactions. One of the main challenges is identifying catalytically active substrate–metal cofactor–host geometries. The advent of expanded genetic code methods for the in vivo incorporation of non-canonical metal-binding amino acids into proteins allow to address an important aspect of this challenge: the creation of a stable, well-defined metal-binding site. Here, we report a designed artificial metallohydratase, based on the transcriptional repressor lactococcal multidrug resistance regulator (LmrR), in which the non-canonical amino acid (2,2′-bipyridin-5yl)alanine is used to bind the catalytic Cu(II) ion. Starting from a set of empirical pre-conditions, a combination of cluster model calculations (QM), protein–ligand docking and molecular dynamics simulations was used to propose metallohydratase variants, that were experimentally verified. The agreement observed between the computationally predicted and experimentally observed catalysis results demonstrates the power of the artificial metalloenzyme design approach presented here.
Metal: CuLigand type: BipyridineHost protein: Lactoccal multidrug resistant regulator (LmrR)Anchoring strategy: ---Optimization: GeneticNotes: ---
-
Multifunctional Nanoenzymes from Carbonic Anhydrase Skeleton
-
Process Biochem. 2018, 72, 71-78, 10.1016/j.procbio.2018.06.005
Carbonic anhydrase (carbonic dehydratase) (CA) is a metalloenzyme that contains zinc (Zn2+) ion in its active site. CA catalyzes the reversible conversion of carbon dioxide and water to bicarbonate and protons. Zn2+ ions, which are present in the active site of the enzyme, interact with the substrate molecules directly and cause catalytic effect. In this study, a nano-enzyme system was designed in aqueous solutions at room temperature and under nitrogen atmosphere to use the CA enzyme without any pre-treatment and deformation in its structure. The novel concept ANADOLUCA (AmiNo Acid (monomer) Decorated and Light Underpinning Conjugation Approach) was used for this process, nano CA enzyme of size 93 nm was synthesized. The activity of the synthesized nano CA was measured following the change in absorbance during the conversion of 4-nitrophenylacetate (NPA) to 4-nitrophenylate ion at 348 nm for a period of 10 min at 25 °C compared with free CA enzyme. Km and Vmax values for nano CA enzyme were found to be 0.442 mM and 1.6 × 10−3 mM min-1, respectively, whereas Km and Vmax values for free CA were found to be 0.471 mM and 1.5 × 10−3 mM min-1, respectively. In addition to these, the Zn2+ ion present in the active site of the nano CA enzyme was replaced by rodium metal. This nanorodium-substituted CA has been investigated as a new reductase enzyme for the stereoselective hydrogenation of olefins. Then, the Zn2+ ion in the active site of the nano CA enzyme was replaced with manganese metal to enhance the enzyme structure, thereby gaining characteristics of peroxidase. This newly synthesized nano manganese-substituted CA enzyme was investigated for its role as a peroxidase, which could be an alternative for hydrogen peroxidases.
Metal: ZnLigand type: Amino acidHost protein: Carbonic anhydrase (CA)Anchoring strategy: Metal substitutionOptimization: ChemicalNotes: Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Hydrolysis of 4-nitrophenyl acetate.
Metal: RhLigand type: Amino acidHost protein: Carbonic anhydrase (CA)Anchoring strategy: Metal substitutionOptimization: ChemicalNotes: Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Hydration of styrene.
Metal: MnLigand type: Amino acidHost protein: Carbonic anhydrase (CA)Anchoring strategy: Metal substitutionOptimization: ChemicalNotes: Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Oxidation of styrene.