3 publications
-
A Hybrid Ring- Opening Metathesis Polymerization Catalyst Based on an Engineered Variant of the Beta-Barrel Protein FhuA
-
Chem. - Eur. J. 2013, 19, 13865-13871, 10.1002/chem.201301515
A β‐barrel protein hybrid catalyst was prepared by covalently anchoring a Grubbs–Hoveyda type olefin metathesis catalyst at a single accessible cysteine amino acid in the barrel interior of a variant of β‐barrel transmembrane protein ferric hydroxamate uptake protein component A (FhuA). Activity of this hybrid catalyst type was demonstrated by ring‐opening metathesis polymerization of a 7‐oxanorbornene derivative in aqueous solution.
-
An Artificial Ruthenium-Containing β-Barrel Protein for Alkene–Alkyne Coupling Reaction
-
Org. Biomol. Chem. 2021, 19, 2912-2916, 10.1039/d1ob00279a
A modified Cp*Ru complex, equipped with a maleimide group, was covalently attached to a cysteine of an engineered variant of Ferric hydroxamate uptake protein component: A (FhuA). This synthetic metalloprotein catalyzed the intermolecular alkene–alkyne coupling of 3-butenol with 5-hexynenitrile. When compared with the protein-free Cp*Ru catalyst, the biohybrid catalyst produced the linear product with higher regioselectivity.
-
Hybrid Ruthenium ROMP Catalysts Based on an Engineered Variant of β-Barrel Protein FhuA ΔCVFtev: Effect of Spacer Length
-
Chem. - Asian J. 2015, 10, 177-182, 10.1002/asia.201403005
A biohybrid ring‐opening olefin metathesis polymerization catalyst based on the reengineered β‐barrel protein FhuA ΔCVFtev was chemically modified with respect to the covalently anchored Grubbs–Hoveyda type catalyst. Shortening of the spacer (1,3‐propanediyl to methylene) between the N‐heterocyclic carbene ligand and the cysteine site 545 increased the ROMP activity toward a water‐soluble 7‐oxanorbornene derivative. The cis/trans ratio of the double bond in the polymer was influenced by the hybrid catalyst.