2 publications
-
Metal-Mediated Protein Assembly Using a Genetically Incorporated Metal-Chelating Amino Acid
-
Biomacromolecules 2020, 21, 5021-5028, 10.1021/acs.biomac.0c01194
Many natural proteins function in oligomeric forms, which are critical for their sophisticated functions. The construction of protein assemblies has great potential for biosensors, enzyme catalysis, and biomedical applications. In designing protein assemblies, a critical process is to create protein–protein interaction (PPI) networks at defined sites of a target protein. Although a few methods are available for this purpose, most of them are dependent on existing PPIs of natural proteins to some extent. In this report, a metal-chelating amino acid, 2,2′-bipyridylalanine (BPA), was genetically introduced into defined sites of a monomeric protein and used to form protein oligomers. Depending on the number of BPAs introduced into the protein and the species of metal ions (Ni2+ and Cu2+), dimers or oligomers with different oligomerization patterns were formed by complexation with a metal ion. Oligomer sizes could also be controlled by incorporating two BPAs at different locations with varied angles to the center of the protein. When three BPAs were introduced, the monomeric protein formed a large complex with Ni2+. In addition, when Cu2+ was used for complex formation with the protein containing two BPAs, a linear complex was formed. The method proposed in this report is technically simple and generally applicable to various proteins with interesting functions. Therefore, this method would be useful for the design and construction of functional protein assemblies.
Ligand type: BipyridineHost protein: Maltose-binding protein (MBP)Anchoring strategy: DativeOptimization: ---Reaction: ---Max TON: ---ee: ---PDB: ---Notes: ---
-
Rare Earth Metal Ions as Probes of Calcium Binding Sites in Proteins: Neodynium Acceleration of the Activation of Trypsinogen
-
J. Biol. Chem. 1970, n/a
The rate of activation of the conversion of trypsinogen to trypsin has been found to be greatly accelerated by the neodymium(III) ion. The similarity of this process to the calcium(II) ion activation suggests that both metal ions bind at identical sites in trypsinogen. The rate of activation in the presence of the neodymium ion is much greater than that of the calcium ion, probably reflecting the increased stability constant of the neodymium-protein complex. In contrast to the calcium ion, however, neodymium(III) can be scrutinized by a variety of spectral and magnetic techniques which should reveal information concerning the calcium ion binding sites in proteins. Since the chemistry and the range of sires of the rare earth metal ions are so similar to that of the calcium ion, it is suggested that generally these ions should make good replacement ions for probing the calcium ion binding sites of proteins and enzymes.
Metal: NdLigand type: Amino acidHost protein: TrypsinAnchoring strategy: Metal substitutionOptimization: ---Notes: PMID 5484822