2 publications

2 publications

A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold

Green, A.P.; Hilvert, D.

J. Am. Chem. Soc. 2018, 140, 1535-1543, 10.1021/jacs.7b12621

Expanding the range of genetically encoded metal coordination environments accessible within tunable protein scaffolds presents excellent opportunities for the creation of metalloenzymes with augmented properties and novel activities. Here, we demonstrate that installation of a noncanonical Nδ-methyl histidine (NMH) as the proximal heme ligand in the oxygen binding protein myoglobin (Mb) leads to substantial increases in heme redox potential and promiscuous peroxidase activity. Structural characterization of this catalytically modified myoglobin variant (Mb NMH) revealed significant changes in the proximal pocket, including alterations to hydrogen-bonding interactions involving the prosthetic porphyrin cofactor. Further optimization of Mb NMH via a combination of rational modification and several rounds of laboratory evolution afforded efficient peroxidase biocatalysts within a globin fold, with activities comparable to those displayed by nature’s peroxidases.


Metal: Fe
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Oxidation
Max TON: ~1650
ee: ---
PDB: 5OJ9
Notes: Oxidation of amplex red

Engineered Metalloenzymes with Non-Canonical Coordination Environments

Review

Green, A.P.; Hilvert, D.

Chem. - Eur. J. 2018, 24, 11821-11830, 10.1002/chem.201800975

Nature employs a limited number of genetically encoded, metal‐coordinating residues to create metalloenzymes with diverse structures and functions. Engineered components of the cellular translation machinery can now be exploited to encode non‐canonical ligands with user‐defined electronic and structural properties. This ability to install “chemically programmed” ligands into proteins can provide powerful chemical probes of metalloenzyme mechanism and presents excellent opportunities to create metalloprotein catalysts with augmented properties and novel activities. In this Concept article, we provide an overview of several recent studies describing the creation of engineered metalloenzymes with interesting catalytic properties, and reveal how characterization of these systems has advanced our understanding of nature's bioinorganic mechanisms. We also highlight how powerful laboratory evolution protocols can be readily adapted to allow optimization of metalloenzymes with non‐canonical ligands. This approach combines beneficial features of small molecule and protein catalysis by allowing the installation of a greater variety of local metal coordination environments into evolvable protein scaffolds, and holds great promise for the future creation of powerful metalloprotein catalysts for a host of synthetically valuable transformations.


Notes: ---