2 publications

2 publications

Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism

Review

Jeschek, M.

Trends Biotechnol. 2018, 36, 60-72, 10.1016/j.tibtech.2017.10.003

Residing at the interface of chemistry and biotechnology, artificial metalloenzymes (ArMs) offer an attractive technology to combine the versatile reaction repertoire of transition metal catalysts with the exquisite catalytic features of enzymes. While earlier efforts in this field predominantly comprised studies in well-defined test-tube environments, a trend towards exploiting ArMs in more complex environments has recently emerged. Integration of these artificial biocatalysts in enzymatic cascades and using them in whole-cell biotransformations and in vivo opens up entirely novel prospects for both preparative chemistry and synthetic biology. We highlight selected recent developments with a particular focus on challenges and opportunities in the in vivo application of ArMs.


Notes: ---

De Novo Enzymes: From Computational Design to mRNA Display

Review

Seelig, B.

Trends Biotechnol. 2010, 28, 340-345, 10.1016/j.tibtech.2010.04.003

Enzymes offer cheap, environmentally responsible and highly efficient alternatives to chemical catalysts. The past two decades have seen a significant rise in the use of enzymes in industrial settings. Although many natural enzymes have been modified through protein engineering to better suit practical applications, these approaches are often insufficient. A key goal of enzyme engineers is to build enzymes de novo – or, ‘from scratch’. To date, several technologies have been developed to achieve this goal: namely, computational design, catalytic antibodies and mRNA display. These methods rely on different principles, trading off rational protein design against an entirely combinatorial approach of directed evolution of vast protein libraries. The aim of this article is to review and compare these methods and their potential for generating truly de novo biocatalysts.


Notes: ---