5 publications
-
A Designed Heme-[4Fe-4S] Metalloenzyme Catalyzes Sulfite Reduction like the Native Enzyme
-
Science 2018, 361, 1098-1101, 10.1126/science.aat8474
Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved—through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites—to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.
Metal: FeHost protein: Cytochrome c peroxidaseAnchoring strategy: DativeOptimization: Chemical & geneticNotes: Designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase
-
An Evolutionary Path to Altered Cofactor Specificity in a Metalloenzyme
-
Nat. Commun. 2020, 11, 10.1038/s41467-020-16478-0
AbstractAlmost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (SOD) family exemplifies this deficit, as the specific metal used by any family member cannot be predicted. Biochemical, structural and paramagnetic analysis of two evolutionarily related SODs with different metal specificity produced by the pathogenic bacterium Staphylococcus aureus identifies two positions that control metal specificity. These residues make no direct contacts with the metal-coordinating ligands but control the metal’s redox properties, demonstrating that subtle architectural changes can dramatically alter metal utilization. Introducing these mutations into S. aureus alters the ability of the bacterium to resist superoxide stress when metal starved by the host, revealing that small changes in metal-dependent activity can drive the evolution of metalloenzymes with new cofactor specificity.
Ligand type: Amino acidHost protein: Superoxide dismutase (SOD)Anchoring strategy: DativeOptimization: GeneticNotes: PDB: 6EX3, 6EX4, 6EX5, 6QV8, 6QV9
-
Aqueous Light Driven Hydrogen Production by a Ru–Ferredoxin–Co Biohybrid
-
Chem. Commun. 2015, 51, 10628-10631, 10.1039/c5cc03006d
Long-lived charge separation facilitates photocatalytic H2 production in a mini reaction center/catalyst complex.
Metal: CoLigand type: OximeHost protein: Ferredoxin (Fd)Anchoring strategy: DativeOptimization: ---Notes: Recalculated TON
-
Rational Design of a Miniature Photocatalytic CO2-Reducing Enzyme
-
ACS Catal. 2021, 11, 5628-5635, 10.1021/acscatal.1c00287
Photosystem I (PSI) is a very large membrane protein complex (∼1000 kDa) harboring P700*, the strongest reductant known in biological systems, which is responsible for driving NAD(P)+ and ultimately for CO2 reduction. Although PSI is one of the most important components in the photosynthesis machinery, it has remained difficult to enhance PSI functions through genetic engineering due to its enormous complexity. Inspired by PSI’s ability to undergo multiple-step photo-induced electron hopping from P700* to iron–sulfur [Fe4S4] clusters, we designed a 33 kDa miniature photocatalytic CO2-reducing enzyme (mPCE) harboring a chromophore (BpC) and two [Fe4S4] clusters (FeA/FeB). Through reduction potential fine-tuning, we optimized the multiple-step electron hopping from BpC to FeA/FeB, culminating in a CO2/HCOOH conversion quantum efficiency of 1.43%. As mPCE can be overexpressed with a high yield in Escherichia coli cells without requiring synthetic cofactors, further development along this route may result in rapid photo-enzyme quantum yield improvement and functional expansion through an efficient directed evolution process.
Metal: FeLigand type: Amino acidHost protein: Ferredoxin (Fd)Anchoring strategy: DativeOptimization: GeneticNotes: ---
-
Ru–protein–Co Biohybrids Designed for Solar Hydrogen Production: Understanding Electron Transfer Pathways Related to Photocatalytic Function
-
Chem. Sci. 2016, 7, 7068-7078, 10.1039/c6sc03121h
A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(II)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(III)–Fd–Co(I) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(I)–ApoFld–Co(I) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(II)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production.
Metal: CoLigand type: OximeHost protein: Ferredoxin (Fd)Anchoring strategy: DativeOptimization: ChemicalNotes: Recalculated TON