2 publications
-
Artificial Metalloenzymes Through Cysteine-Selective Conjugation of Phosphines to Photoactive Yellow Protein
-
ChemBioChem 2010, 11, 1236-1239, 10.1002/cbic.201000159
Pinning phosphines on proteins: A method for the cysteine‐selective bioconjugation of phosphines has been developed. The photoactive yellow protein has been site‐selectively functionalized with phosphine ligands and phosphine transition metal complexes to afford artificial metalloenzymes that are active in palladium‐catalysed allylic nucleophilic substitution reactions.
Metal: PdHost protein: Photoactive Yellow Protein (PYP)Anchoring strategy: CovalentOptimization: Chemical & geneticNotes: ---
-
Synthesis of Hybrid Transition-Metalloproteins via Thiol-Selective Covalent Anchoring of Rh-Phosphine and Ru-Phenanthroline Complexes
-
Dalton Trans. 2010, 39, 8477, 10.1039/c0dt00239a
The preparation of hybrid transition metalloproteins by thiol-selective incorporation of organometallic rhodium- and ruthenium complexes is described. Phosphine ligands and two rhodium-diphosphine complexes bearing a carboxylic acid group were coupled to the cysteine of PYP R52G, yielding a metalloenzyme active in the rhodium catalyzed hydrogenation of dimethyl itaconate. The successful coupling was shown by 31P NMR spectroscopy and ESI mass spectroscopy. In addition wild-type PYP (PYP WT), PYP R52G and ALBP were successfully modified with a (η6-arene) ruthenium(II) phenanthroline complex via a maleimide linker.
Metal: RhHost protein: Photoactive Yellow Protein (PYP)Anchoring strategy: CovalentOptimization: ---Notes: ---