62 publications
-
8-Amino-5,6,7,8-tetrahydroquinoline in Iridium(III) Biotinylated Cp* Complex as Artificial Imine Reductase
-
New J. Chem. 2018, 42, 18773-18776, 10.1039/C8NJ04558E
The imine reductase formed by the (R)-CAMPY ligand bound to the S112M Sav mutant showed an 83% ee in the asymmetric transfer hydrogenation of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell
-
Nat. Commun. 2018, 9, 10.1038/s41467-018-04440-0
Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.
Notes: ---
-
Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation
-
Catal. Lett. 2016, 146, 564-569, 10.1007/s10562-015-1681-6
We report on the synthesis of biotinylated (cyclopentadienone)iron tricarbonyl complexes, the in situ generation of the corresponding streptavidin conjugates and their application in asymmetric hydrogenation of imines and ketones.
Metal: FeHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
-
A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology
-
J. Am. Chem. Soc. 2013, 135, 5384-5388, 10.1021/ja309974s
Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.
Notes: ---
Notes: ---
-
An Artificial Cofactor Catalyzing the Baylis‐Hillman Reaction with Designed Streptavidin as Protein Host
-
ChemBioChem 2021, 22, 1573-1577, 10.1002/cbic.202000880
An artificial cofactor based on an organocatalyst embedded in a protein has been used to conduct the Baylis-Hillman reaction in a buffered system. As protein host, we chose streptavidin, as it can be easily crystallized and thereby supports the design process. The protein host around the cofactor was rationally designed on the basis of high-resolution crystal structures obtained after each variation of the amino acid sequence. Additionally, DFT-calculated intermediates and transition states were used to rationalize the observed activity. Finally, repeated cycles of structure determination and redesign led to a system with an up to one order of magnitude increase in activity over the bare cofactor and to the most active proteinogenic catalyst for the Baylis-Hillman reaction known today.
Metal: ---Ligand type: ---Host protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & computational designNotes: Organocatalyst
-
An Artificial Metalloenzyme for Carbene Transfer Based on a Biotinylated Dirhodium Anchored Within Streptavidin
-
Cat. Sci. Technol. 2018, 8, 2294-2298, 10.1039/C8CY00646F
We report an artificial carbenoid transferase which combines a biotinylated dirhodium moiety within streptavidin scaffold.
Metal: RhLigand type: CarboxylateHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Cyclopropanation reaction was also performed in the E. coli periplasm.
Metal: RhLigand type: CarboxylateHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
An Artificial Metalloenzyme with the Kinetics of Native Enzymes
-
Science 2016, 354, 102-106, 10.1126/science.aah4427
Natural enzymes contain highly evolved active sites that lead to fast rates and high selectivities. Although artificial metalloenzymes have been developed that catalyze abiological transformations with high stereoselectivity, the activities of these artificial enzymes are much lower than those of natural enzymes. Here, we report a reconstituted artificial metalloenzyme containing an iridium porphyrin that exhibits kinetic parameters similar to those of natural enzymes. In particular, variants of the P450 enzyme CYP119 containing iridium in place of iron catalyze insertions of carbenes into C–H bonds with up to 98% enantiomeric excess, 35,000 turnovers, and 2550 hours−1 turnover frequency. This activity leads to intramolecular carbene insertions into unactivated C–H bonds and intermolecular carbene insertions into C–H bonds. These results lift the restrictions on merging chemical catalysis and biocatalysis to create highly active, productive, and selective metalloenzymes for abiological reactions.
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
-
An Enantioselective Artificial Suzukiase Based on the Biotin–Streptavidin Technology
-
Chem. Sci. 2016, 7, 673-677, 10.1039/c5sc03116h
Introduction of a biotinylated monophosphine palladium complex within streptavidin affords an enantioselective artificial Suzukiase. Site-directed mutagenesis allowed the optimization of the activity and the enantioselectivity of this artificial metalloenzyme. A variety of atropisomeric biaryls were produced in good yields and up to 90% ee.
Metal: PdHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: PdHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades
-
J. Am. Chem. Soc. 2016, 138, 5781-5784, 10.1021/jacs.6b02470
Enzymes typically depend on either NAD(P)H or FADH2 as hydride source for reduction purposes. In contrast, organometallic catalysts most often rely on isopropanol or formate to generate the reactive hydride moiety. Here we show that incorporation of a Cp*Ir cofactor possessing a biotin moiety and 4,7-dihydroxy-1,10-phenanthroline into streptavidin yields an NAD(P)H-dependent artificial transfer hydrogenase (ATHase). This ATHase (0.1 mol%) catalyzes imine reduction with 1 mM NADPH (2 mol%), which can be concurrently regenerated by a glucose dehydrogenase (GDH) using only 1.2 equiv of glucose. A four-enzyme cascade consisting of the ATHase, the GDH, a monoamine oxidase, and a catalase leads to the production of enantiopure amines.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Aqueous Oxidation of Alcohols Catalyzed by Artificial Metalloenzymes Based on the Biotin–Avidin Technology
-
J. Organomet. Chem. 2005, 690, 4488-4491, 10.1016/j.jorganchem.2005.02.001
Based on the incorporation of biotinylated organometallic catalyst precursors within (strept)avidin, we have developed artificial metalloenzymes for the oxidation of secondary alcohols using tert-butylhydroperoxide as oxidizing agent. In the presence of avidin as host protein, the biotinylated aminosulfonamide ruthenium piano stool complex 1 (0.4 mol%) catalyzes the oxidation of sec-phenethyl alcohol at room temperature within 90 h in over 90% yield. Gel electrophoretic analysis of the reaction mixture suggests that the host protein is not oxidatively degraded during catalysis.
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Avidin (Av)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin
-
J. Am. Chem. Soc. 2008, 130, 8085-8088, 10.1021/ja8017219
Nature’s catalysts are specifically evolved to carry out efficient and selective reactions. Recent developments in biotechnology have allowed the rapid optimization of existing enzymes for enantioselective processes. However, the ex nihilo creation of catalytic activity from a noncatalytic protein scaffold remains very challenging. Herein, we describe the creation of an artificial enzyme upon incorporation of a vanadyl ion into the biotin-binding pocket of streptavidin, a protein devoid of catalytic activity. The resulting artificial metalloenzyme catalyzes the enantioselective oxidation of prochiral sulfides with good enantioselectivities both for dialkyl and alkyl-aryl substrates (up to 93% enantiomeric excess). Electron paragmagnetic resonance spectroscopy, chemical modification, and mutagenesis studies suggest that the vanadyl ion is located within the biotin-binding pocket and interacts only via second coordination sphere contacts with streptavidin.
Metal: VLigand type: WaterHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: GeneticNotes: ---
-
Artificial Metalloenzymes Based on Biotin-Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation
-
Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 4683-4687, 10.1073/pnas.0409684102
Most physiological and biotechnological processes rely on molecular recognition between chiral (handed) molecules. Manmade homogeneous catalysts and enzymes offer complementary means for producing enantiopure (single-handed) compounds. As the subtle details that govern chiral discrimination are difficult to predict, improving the performance of such catalysts often relies on trial-and-error procedures. Homogeneous catalysts are optimized by chemical modification of the chiral environment around the metal center. Enzymes can be improved by modification of gene encoding the protein. Incorporation of a biotinylated organometallic catalyst into a host protein (avidin or streptavidin) affords versatile artificial metalloenzymes for the reduction of ketones by transfer hydrogenation. The boric acid·formate mixture was identified as a hydrogen source compatible with these artificial metalloenzymes. A combined chemo-genetic procedure allows us to optimize the activity and selectivity of these hybrid catalysts: up to 94% (R) enantiomeric excess for the reduction of p-methylacetophenone. These artificial metalloenzymes display features reminiscent of both homogeneous catalysts and enzymes.
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzymes for Asymmetric Allylic Alkylation on the Basis of the Biotin–Avidin Technology
-
Angew. Chem. Int. Ed. 2008, 47, 701-705, 10.1002/anie.200703159
Palladium in the active site: The incorporation of a biotinylated palladium diphosphine within streptavidin yielded an artificial metalloenzyme for the title reaction (see scheme). Chemogenetic optimization of the catalyst by the introduction of a spacer (red star) between biotin (green triangle) and palladium and saturation mutagenesis at position S112X afforded both R‐ and S‐selective artificial asymmetric allylic alkylases.
Metal: PdLigand type: PhosphineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin-Avidin
-
J. Am. Chem. Soc. 2003, 125, 9030-9031, 10.1021/ja035545i
Homogeneous and enzymatic catalysis offer complementary means to generate enantiomerically pure compounds. Incorporation of achiral biotinylated rhodium−diphosphine complexes into (strept)avidin yields artificial metalloenzymes for the hydrogenation of N-protected dehydroamino acids. A chemogenetic optimization procedure allows one to produce (R)-acetamidoalanine with 96% enantioselectivity. These hybrid catalysts display features reminiscent both of enzymatic and of homogeneous systems.
Metal: RhLigand type: PhosphineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein Accelerated Catalysis
-
J. Organomet. Chem. 2004, 689, 4868-4871, 10.1016/j.jorganchem.2004.09.032
We report on the phenomenon of protein-accelerated catalysis in the field of artificial metalloenzymes based on the non-covalent incorporation of biotinylated rhodium–diphosphine complexes in (strept)avidin as host proteins. By incrementally varying the [Rh(COD)(Biot-1)]+ vs. (strept)avidin ratio, we show that the enantiomeric excess of the produced acetamidoalanine decreases slowly. This suggests that the catalyst inside (strept)avidin is more active than the catalyst outside the host protein. Both avidin and streptavidin display protein-accelerated catalysis as the protein embedded catalyst display 12.0- and 3.0-fold acceleration over the background reaction with a catalyst devoid of protein. Thus, these artificial metalloenzymes display an increase both in activity and in selectivity for the reduction of acetamidoacrylic acid.
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: Reduction of acetamidoacrylic acid. 3.0-fold protein acceleration.
Notes: Reduction of acetamidoacrylic acid. 12.0-fold protein acceleration.
-
Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-(Strept)Avidin Technology
-
Chem. Commun. 2011, 47, 12065, 10.1039/c1cc15004a
Incorporation of a biotinylated Hoveyda-Grubbs catalyst within (strept)avidin affords artificial metalloenzymes for the ring-closing metathesis of N-tosyl diallylamine in aqueous solution. Optimization of the performance can be achieved either by chemical or genetic means.
Metal: RuLigand type: CarbeneHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: RCM
Metal: RuLigand type: CarbeneHost protein: Avidin (Av)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: RCM
-
Artificial Metalloenzymes for the Diastereoselective Reduction of NAD+ to NAD2H
-
Org. Biomol. Chem. 2015, 13, 357-360, 10.1039/c4ob02071e
Stereoselectively labelled isotopomers of NAD(P)H are highly relevant for mechanistic studies of enzymes which utilize them as redox equivalents.
Notes: ---
-
Artificial Metalloenzymes: (Strept)avidin as Host for Enantioselective Hydrogenation by Achiral Biotinylated Rhodium-Diphosphine Complexes
-
J. Am. Chem. Soc. 2004, 126, 14411-14418, 10.1021/ja0476718
We report on the generation of artificial metalloenzymes based on the noncovalent incorporation of biotinylated rhodium−diphosphine complexes in (strept)avidin as host proteins. A chemogenetic optimization procedure allows one to optimize the enantioselectivity for the reduction of acetamidoacrylic acid (up to 96% ee (R) in streptavidin S112G and up to 80% ee (S) in WT avidin). The association constant between a prototypical cationic biotinylated rhodium−diphosphine catalyst precursor and the host proteins was determined at neutral pH: log Ka = 7.7 for avidin (pI = 10.4) and log Ka = 7.1 for streptavidin (pI = 6.4). It is shown that the optimal operating conditions for the enantioselective reduction are 5 bar at 30 °C with a 1% catalyst loading.
Metal: RhLigand type: PhosphineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloproteins Containing Co4O4 Cubane Active Sites
-
J. Am. Chem. Soc. 2018, 140, 2739-2742, 10.1021/jacs.7b13052
Artificial metalloproteins (ArMs) containing Co4O4 cubane active sites were constructed via biotin–streptavidin technology. Stabilized by hydrogen bonds (H-bonds), terminal and cofacial CoIII–OH2 moieties are observed crystallographically in a series of immobilized cubane sites. Solution electrochemistry provided correlations of oxidation potential and pH. For variants containing Ser and Phe adjacent to the metallocofactor, 1e–/1H+ chemistry predominates until pH 8, above which the oxidation becomes pH-independent. Installation of Tyr proximal to the Co4O4 active site provided a single H-bond to one of a set of cofacial CoIII–OH2 groups. With this variant, multi-e–/multi-H+ chemistry is observed, along with a change in mechanism at pH 9.5 that is consistent with Tyr deprotonation. With structural similarities to both the oxygen-evolving complex of photosystem II (H-bonded Tyr) and to thin film water oxidation catalysts (Co4O4 core), these findings bridge synthetic and biological systems for water oxidation, highlighting the importance of secondary sphere interactions in mediating multi-e–/multi-H+ reactivity.
Metal: CoHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Co-complex in Sav WT
Metal: CoHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Co-complex in Sav S112Y
-
Artificial Metalloproteins with Dinuclear Iron–Hydroxido Centers
-
J. Am. Chem. Soc. 2021, 143, 2384-2393, 10.1021/jacs.0c12564
Dinuclear iron centers with a bridging hydroxido or oxido ligand form active sites within a variety of metalloproteins. A key feature of these sites is the ability of the protein to control the structures around the Fe centers, which leads to entatic states that are essential for function. To simulate this controlled environment, artificial proteins have been engineered using biotin–streptavidin (Sav) technology in which Fe complexes from adjacent subunits can assemble to form [FeIII–(μ-OH)–FeIII] cores. The assembly process is promoted by the site-specific localization of the Fe complexes within a subunit through the designed mutation of a tyrosinate side chain to coordinate the Fe centers. An important outcome is that the Sav host can regulate the Fe···Fe separation, which is known to be important for function in natural metalloproteins. Spectroscopic and structural studies from X-ray diffraction methods revealed uncommonly long Fe···Fe separations that change by less than 0.3 Å upon the binding of additional bridging ligands. The structural constraints imposed by the protein host on the di-Fe cores are unique and create examples of active sites having entatic states within engineered artificial metalloproteins.
Reaction: ---Max TON: ---ee: ---PDB: ---Notes: PDB: 6VOZ, 6VO9
-
Artificial Transfer Hydrogenases Based on the Biotin-(Strept)avidin Technology: Fine Tuning the Selectivity by Saturation Mutagenesis of the Host Protein
-
J. Am. Chem. Soc. 2006, 128, 8320-8328, 10.1021/ja061580o
Incorporation of biotinylated racemic three-legged d6-piano stool complexes in streptavidin yields enantioselective transfer hydrogenation artificial metalloenzymes for the reduction of ketones. Having identified the most promising organometallic catalyst precursors in the presence of wild-type streptavidin, fine-tuning of the selectivity is achieved by saturation mutagenesis at position S112. This choice for the genetic optimization site is suggested by docking studies which reveal that this position lies closest to the biotinylated metal upon incorporation into streptavidin. For aromatic ketones, the reaction proceeds smoothly to afford the corresponding enantioenriched alcohols in up to 97% ee (R) or 70% (S). On the basis of these results, we suggest that the enantioselection is mostly dictated by CH/π interactions between the substrate and the η6-bound arene. However, these enantiodiscriminating interactions can be outweighed in the presence of cationic residues at position S112 to afford the opposite enantiomers of the product.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines
-
Angew. Chem. Int. Ed. 2011, 50, 3026-3029, 10.1002/anie.201007820
Man‐made activity: Introduction of a biotinylated iridium piano stool complex within streptavidin affords an artificial imine reductase (see scheme). Saturation mutagenesis allowed optimization of the activity and the enantioselectivity of this metalloenzyme, and its X‐ray structure suggests that a nearby lysine residue acts as a proton source during the transfer hydrogenation.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes
-
ACS Cent. Sci. 2017, 3, 302-308, 10.1021/acscentsci.6b00391
Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C–H bond. We postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiple modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, >70:1 dr, >75% yield, and ∼10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Together, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: Selectivity for cis product (cis/trans = 90:1)
-
Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation
-
Science 2012, 338, 500-503, 10.1126/science.1226132
Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C–H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.
Notes: ---
-
Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes
-
J. Am. Chem. Soc. 2019, 141, 15869-15878, 10.1021/jacs.9b06923
The biotin–streptavidin technology has been extensively exploited to engineer artificial metalloenzymes (ArMs) that catalyze a dozen different reactions. Despite its versatility, the homotetrameric nature of streptavidin (Sav) and the noncooperative binding of biotinylated cofactors impose two limitations on the genetic optimization of ArMs: (i) point mutations are reflected in all four subunits of Sav, and (ii) the noncooperative binding of biotinylated cofactors to Sav may lead to an erosion in the catalytic performance, depending on the cofactor:biotin-binding site ratio. To address these challenges, we report on our efforts to engineer a (monovalent) single-chain dimeric streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility of scdSav as host protein is highlighted for the asymmetric transfer hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning of the biotin-binding vestibule, unrivaled levels of activity and selectivity were achieved for the reduction of challenging prochiral imines. Comparison of the saturation kinetic data and X-ray structures of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav highlights the advantages of the presence of a single biotinylated cofactor precisely localized within the biotin-binding vestibule of the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated for the reduction of the salsolidine precursor (500 mM) to afford (R)-salsolidine in 90% ee and >17 000 TONs. Monovalent scdSav thus provides a versatile scaffold to evolve more efficient ArMs for in vivo catalysis and large-scale applications.
Notes: Additional PDB: 6S50
-
Chemical Optimization of Artificial Metalloenzymes Based on the Biotin-Avidin Technology: (S)-Selective and Solvent-Tolerant Hydrogenation Catalysts via the Introduction of Chiral Amino Acid Spacers
-
Chem. Commun. 2005, 4815, 10.1039/b509015f
Incorporation of biotinylated-[rhodium(diphosphine)]+ complexes, with enantiopure amino acid spacers, in streptavidin affords solvent-tolerant and selective artificial metalloenzymes: up to 91% ee (S) in the hydrogenation of N-protected dehydroamino acids.
Metal: RhLigand type: PhosphineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
-
Chemoselective, Enzymatic C−H Bond Amination Catalyzed by a Cytochrome P450 Containing an Ir(Me)-PIX Cofactor
-
J. Am. Chem. Soc. 2017, 139, 1750-1753, 10.1021/jacs.6b11410
Cytochrome P450 enzymes have been engineered to catalyze abiological C–H bond amination reactions, but the yields of these reactions have been limited by low chemoselectivity for the amination of C–H bonds over competing reduction of the azide substrate to a sulfonamide. Here we report that P450s derived from a thermophilic organism and containing an iridium porphyrin cofactor (Ir(Me)-PIX) in place of the heme catalyze enantioselective intramolecular C−H bond amination reactions of sulfonyl azides. These reactions occur with chemoselectivity for insertion of the nitrene units into C−H bonds over reduction of the azides to the sulfonamides that is higher and with substrate scope that is broader than those of enzymes containing iron porphyrins. The products from C−H amination are formed in up to 98% yield and ∼300 TON. In one case, the enantiomeric excess reaches 95:5 er, and the reactions can occur with divergent site selectivity. The chemoselectivity for C–H bond amination is greater than 20:1 in all cases. Variants of the Ir(Me)-PIX CYP119 displaying these properties were identified rapidly by evaluating CYP119 mutants containing Ir(Me)-PIX in cell lysates, rather than as purified enzymes. This study sets the stage to discover suitable enzymes to catalyze challenging C–H amination reactions.
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Cytochrome P450 (CYP119)Anchoring strategy: Metal substitutionOptimization: Chemical & geneticNotes: ---
-
Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes
-
ACS Catal. 2018, 8, 1476-1484, 10.1021/acscatal.7b03773
The streptavidin scaffold was expanded with well-structured naturally occurring motifs. These chimeric scaffolds were tested as hosts for biotinylated catalysts as artificial metalloenzymes (ArM) for asymmetric transfer hydrogenation, ring-closing metathesis and anion−π catalysis. The additional second coordination sphere elements significantly influence both the activity and the selectivity of the resulting hybrid catalysts. These findings lead to the identification of propitious chimeric streptavidins for future directed evolution efforts of artificial metalloenzymes.
Notes: ---
Notes: ---
Metal: RuLigand type: CarbeneHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: GeneticNotes: RCM, biotinylated Hoveyda-Grubbs second generation catalyst
Metal: ---Ligand type: Biotinylated naphthalenediimidHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: GeneticNotes: No metal
-
Computational Insights on an Artificial Imine Reductase Based on the Biotin-Streptavidin Technology
-
ACS Catal. 2014, 4, 833-842, 10.1021/cs400921n
We present a computational study that combines protein–ligand docking, quantum mechanical, and quantum mechanical/molecular mechanical calculations to scrutinize the mechanistic behavior of the first artificial enzyme able to enantioselectively reduce cyclic imines. We applied a novel strategy that allows the characterization of transition state structures in the protein host and their associated reaction paths. Of the most striking results of our investigation is the identification of major conformational differences between the transition state geometries of the lowest energy paths leading to (R)- and (S)-reduction products. The molecular features of (R)- and (S)-transition states highlight distinctive patterns of hydrophobic and polar complementarities between the substrate and the binding site. These differences lead to an activation energy gap that stands in very good agreement with the experimentally determined enantioselectivity. This study sheds light on the mechanism by which transfer hydrogenases operate and illustrates how the change of environment (from homogeneous solution conditions to the asymmetric protein frame) affect the reactivity of the organometallic cofactor. It provides novel insights on the complexity in integrating unnatural organometallic compounds into biological scaffolds. The modeling strategy that we pursued, based on the generation of “pseudo transition state” structures, is computationally efficient and suitable for the discovery and optimization of artificial enzymes. Alternatively, this approach can be applied on systems for which a large conformational sampling is needed to identify relevant transition states.
Notes: Prediction of the enantioselectivity by computational methods.
-
Counter Propagation Artificial Neural Networks Modeling of an Enantioselectivity of Artificial Metalloenzymes
-
Mol. Divers. 2007, 11, 141-152, 10.1007/s11030-008-9068-x
The counter propagation artificial neural networks (CP-ANNs) were used to develop a quantitative structure-selectivity relationship (QSSR) for a set of artificial metalloenzymes. The artificial metalloenzymes consist of biotinylated rhodium-diphosphine complexes incorporated in streptavidin mutants acting as host protein. Such hybrid catalysts have been shown to be good enantioselective hydrogenation catalysts for acetamidoacrylic acid. The descriptor-based models were constructed to predict enantiomeric excess (%ee) on the basis of the catalyst structures originating from docking simulations. 3D molecular descriptors for the docked ligands structures were computed. The relative arrangement of guest and host molecules was coded using distance descriptors (Rh-Cα interatomic distances); the diversity of the mutant proteins at the position S112 was coded with molecular descriptors for the sequence of three neighboring amino acids (T111-S112X-G113). The selection of testing samples for the external model validation was based on the Kohonen mapping. The final model trained by two thirds of the entire dataset was characterized by satisfactory statistical parameters for the external test set (R = 0.953 and RMS = 16.8 %ee). The proposed procedure of docking-based descriptor generation thus appears as a promising alternative to the full characterization of the complex structure by experimental or computational methods.
Metal: RhLigand type: DiphenylphosphineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Computational prediction of the enantioselectivity of the hydrogenation reaction catalysed by the ArM.