3 publications

3 publications

Autoxidation of Ascorbic Acid Catalyzed by a Semisynthetic Enzyme

Kaiser, E.T.

Biopolymers 1990, 29, 39-43, 10.1002/bip.360290107

The semisyntehtic enzyme 6 was prepared by alkylation of the cysteine‐25 sulfhydryl group of papain with the bipyridine 5 and was shown to stoichiometrically bind copper ion; 7 catalyzed the autoxidation of ascorbic acid derivatives with saturation kinetics approximately 20‐fold faster than a model system using 3‐Cu(II).


Metal: Cu
Ligand type: Bipyridine
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

De Novo Design of Functional Proteins: Toward Artificial Hydrogenases

Review

Ghirlanda, G.

Biopolymers 2013, 100, 558-571, 10.1002/bip.22420

Over the last 25 years, de novo design has proven to be a valid approach to generate novel, well‐folded proteins, and most recently, functional proteins. In response to societal needs, this approach is been used increasingly to design functional proteins developed with an eye toward sustainable fuel production. This review surveys recent examples of bioinspired de novo designed peptide based catalysts, focusing in particular on artificial hydrogenases.


Notes: ---

Oxidation Catalysis by Iron and Manganese Porphyrins within Enzyme-Like Cages

Review

Lombardi, A.; Maglio, O.; Nastri, F.

Biopolymers 2018, 109, e23107, 10.1002/bip.23107

Inspired by natural heme‐proteins, scientists have attempted for decades to design efficient and selective metalloporphyrin‐based oxidation catalysts. Starting from the pioneering work on small molecule mimics in the late 1970s, we have assisted to a tremendous progress in designing cages of different nature and complexity, able to accommodate metalloporphyrins. With the intent of tuning and controlling their reactivity, more and more sophisticated and diverse environments are continuously exploited. In this review, we will survey the current state of art in oxidation catalysis using iron‐ and manganese‐porphyrins housed within designed or engineered protein cages. We will also examine the innovative metal‐organic framework (MOF) systems, exploited to achieving an enzyme‐like environment around the metalloporphyrin cofactor.


Notes: ---