2 publications

2 publications

Engineering and Emerging Applications of Artificial Metalloenzymes with Whole Cells

Review

Sauer, D.F.; Schwaneberg, U.

Nat. Catal. 2021, 4, 814-827, 10.1038/s41929-021-00673-3

The field of artificial metalloenzymes (ArMs) is rapidly growing and ArMs are attracting increasing attention, for example, in the fields of biosensing and drug therapy. Protein-engineering methods that are commonly used to tailor the properties of natural enzymes are more frequently included in the design of ArMs. In particular, directed evolution allows the fine-tuning of ArMs, ultimately assisting in the development of their enormous potential. The integration of ArMs in whole cells enables their in vivo application and facilitates high-throughput directed-evolution methodologies. In this Review, we highlight the recent progress of whole-cell conversions and applications of ArMs and critically discuss their limitations and prospects. To focus on ArMs and their specific properties, advantages and challenges, the evolution of natural enzymes for non-natural reactions will not be covered.


Notes: ---

Olefin Metathesis Catalysts Embedded in β-Barrel Proteins: Creating Artificial Metalloproteins for Olefin Metathesis

Review

Okuda, J.; Sauer, D.F.

Beilstein J. Org. Chem. 2018, 14, 2861-2871, 10.3762/bjoc.14.265

This review summarizes the recent progress of Grubbs–Hoveyda (GH) type olefin metathesis catalysts incorporated into the robust fold of β-barrel proteins. Anchoring strategies are discussed and challenges and opportunities in this emerging field are shown from simple small-molecule transformations over ring-opening metathesis polymerizations to in vivo olefin metathesis.


Notes: ---