5 publications
-
A De Novo‐Designed Artificial Metallopeptide Hydrogenase: Insights into Photochemical Processes and the Role of Protonated Cys
-
ChemSusChem 2021, 14, 2237-2246, 10.1002/cssc.202100122
Hydrogenase enzymes produce H2 gas, which can be a potential source of alternative energy. Inspired by the [NiFe] hydrogenases, we report the construction of a de novo-designed artificial hydrogenase (ArH). The ArH is a dimeric coiled coil where two cysteine (Cys) residues are introduced at tandem a/d positions of a heptad to create a tetrathiolato Ni binding site. Spectroscopic studies show that Ni binding significantly stabilizes the peptide producing electronic transitions characteristic of Ni-thiolate proteins. The ArH produces H2 photocatalytically, demonstrating a bell-shaped pH-dependence on activity. Fluorescence lifetimes and transient absorption spectroscopic studies are undertaken to elucidate the nature of pH-dependence, and to monitor the reaction kinetics of the photochemical processes. pH titrations are employed to determine the role of protonated Cys on reactivity. Through combining these results, a fine balance is found between solution acidity and the electron transfer steps. This balance is critical to maximize the production of NiI-peptide and protonation of the NiII−H− intermediate (Ni−R) by a Cys (pKa≈6.4) to produce H2.
Metal: NiLigand type: Amino acidHost protein: Synthetic peptideAnchoring strategy: DativeOptimization: ChemicalNotes: ---
-
Evolving Artificial Metalloenzymes via Random Mutagenesis
-
Nat. Chem. 2018, 10, 318-324, 10.1038/nchem.2927
Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N–H, S–H and Si–H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.
Metal: RhLigand type: OAcHost protein: Prolyl oligopeptidase (POP) from P. furiosusAnchoring strategy: CovalentOptimization: Chemical & geneticNotes: Mutagenesis of the ArM by error-prone PCR
Metal: RhLigand type: OAcHost protein: Prolyl oligopeptidase (POP) from P. furiosusAnchoring strategy: CovalentOptimization: Chemical & geneticNotes: Mutagenesis of the ArM by error-prone PCR
Metal: RhLigand type: OAcHost protein: Prolyl oligopeptidase (POP) from P. furiosusAnchoring strategy: CovalentOptimization: Chemical & geneticNotes: Mutagenesis of the ArM by error-prone PCR
Metal: RhLigand type: OAcHost protein: Prolyl oligopeptidase (POP) from P. furiosusAnchoring strategy: CovalentOptimization: Chemical & geneticNotes: Mutagenesis of the ArM by error-prone PCR
-
Histidine orientation in artificial peroxidase regioisomers as determined by paramagnetic NMR shifts
-
Chem. Commun. 2021, 57, 990-993, 10.1039/d0cc06676a
Fe-Mimochrome VI*a is a synthetic peroxidase and peroxygenase, featuring two different peptides that are covalently-linked to deuteroheme. To perform a systematic structure/function correlation, we purposely shortened the distance between the distal peptide and the heme, allowing for the separation and characterization of two regioisomers. They differ in both His axial-ligand orientation, as determined by paramagnetic NMR shifts, and activity. These findings highlight that synthetic metalloenzymes may provide an efficient tool for disentangling the role of axial ligand orientation over peroxidase activity.
Metal: FeLigand type: Deuteroporphyrin IXHost protein: Synthetic peptideAnchoring strategy: CovalentOptimization: ---Notes: NMR studies of the complexes, no catalysis
-
Receptor-Based Artificial Metalloenzymes on Living Human Cells
-
J. Am. Chem. Soc. 2018, 140, 8756-8762, 10.1021/jacs.8b04326
Artificial metalloenzymes are known to be promising tools for biocatalysis, but their recent compartmentalization has led to compatibly with cell components thus shedding light on possible therapeutic applications. We prepared and characterized artificial metalloenzymes based on the A2A adenosine receptor embedded in the cytoplasmic membranes of living human cells. The wild type receptor was chemically engineered into metalloenzymes by its association with strong antagonists that were covalently bound to copper(II) catalysts. The resulting cells enantioselectively catalyzed the abiotic Diels–Alder cycloaddition reaction of cyclopentadiene and azachalcone. The prospects of this strategy lie in the organ-confined in vivo preparation of receptor-based artificial metalloenzymes for the catalysis of reactions exogenous to the human metabolism. These could be used for the targeted synthesis of either drugs or deficient metabolites and for the activation of prodrugs, leading to therapeutic tools with unforeseen applications.
Metal: CuLigand type: PhenanthrolineHost protein: A2A adenosine receptorAnchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Semi‐Rationally Designed Short Peptides Self‐Assemble and Bind Hemin to Promote Cyclopropanation
-
Angew. Chem. Int. Ed. 2020, 59, 8108-8112, 10.1002/anie.201916712
The self-assembly of short peptides gives rise to versatile nanoassemblies capable of promoting efficient catalysis. We have semi-rationally designed a series of seven-residue peptides that form hemin-binding catalytic amyloids to facilitate enantioselective cyclopropanation with efficiencies that rival those of engineered hemin proteins. These results demonstrate that: 1) Catalytic amyloids can bind complex metallocofactors to promote practically important multisubstrate transformations. 2) Even essentially flat surfaces of amyloid assemblies can impart a substantial degree of enantioselectivity without the need for extensive optimization. 3) The ease of peptide preparation allows for straightforward incorporation of unnatural amino acids and the preparation of peptides made from d-amino acids with complete reversal of enantioselectivity.
Metal: FeLigand type: PorphyrinHost protein: Synthetic peptideAnchoring strategy: SupramolecularOptimization: GeneticNotes: Max 88% yield