3 publications

3 publications

Artificial Metalloproteins Containing Co4O4 Cubane Active Sites

Borovik, A.S.; Don Tilley, T.

J. Am. Chem. Soc. 2018, 140, 2739-2742, 10.1021/jacs.7b13052

Artificial metalloproteins (ArMs) containing Co4O4 cubane active sites were constructed via biotin–streptavidin technology. Stabilized by hydrogen bonds (H-bonds), terminal and cofacial CoIII–OH2 moieties are observed crystallographically in a series of immobilized cubane sites. Solution electrochemistry provided correlations of oxidation potential and pH. For variants containing Ser and Phe adjacent to the metallocofactor, 1e–/1H+ chemistry predominates until pH 8, above which the oxidation becomes pH-independent. Installation of Tyr proximal to the Co4O4 active site provided a single H-bond to one of a set of cofacial CoIII–OH2 groups. With this variant, multi-e–/multi-H+ chemistry is observed, along with a change in mechanism at pH 9.5 that is consistent with Tyr deprotonation. With structural similarities to both the oxygen-evolving complex of photosystem II (H-bonded Tyr) and to thin film water oxidation catalysts (Co4O4 core), these findings bridge synthetic and biological systems for water oxidation, highlighting the importance of secondary sphere interactions in mediating multi-e–/multi-H+ reactivity.


Metal: Co
Ligand type: OAc; Pyridine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 6AUC
Notes: Co-complex in Sav WT

Metal: Co
Ligand type: OAc; Pyridine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 6AUE
Notes: Co-complex in Sav S112Y

Nature-Driven Photochemistry for Catalytic Solar Hydrogen Production: A Photosystem I-Transition Metal Catalyst Hybrid

Tiede, D.M.; Utschig, L.M.

J. Am. Chem. Soc. 2011, 133, 16334-16337, 10.1021/ja206012r

Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature’s specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.


Metal: Co
Ligand type: Oxime; Pyridine
Host protein: Photosystem I (PSI)
Anchoring strategy: Undefined
Optimization: ---
Reaction: H2 evolution
Max TON: 2080
ee: ---
PDB: ---
Notes: Recalculated TON

Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology

Alberto, R.; Ward, T.R.

Helv. Chim. Acta 2018, 101, e1800036, 10.1002/hlca.201800036

Photocatalytic hydrogen evolution by an artificial hydrogenase based on the biotin‐streptavidin technology is reported. A biotinylated cobalt pentapyridyl‐based hydrogen evolution catalyst (HEC) was incorporated into different mutants of streptavidin. Catalysis with [Ru(bpy)3]Cl2 as a photosensitizer (PS) and ascorbate as sacrificial electron donor (SED) at different pH values highlighted the impact of close lying amino acids that may act as a proton relay under the reaction conditions (Asp, Arg, Lys). In the presence of a close‐lying lysine residue, both, the rates were improved, and the reaction was initiated much faster. The X‐ray crystal structure of the artificial hydrogenase reveals a distance of 8.8 Å between the closest lying Co‐moieties. We thus suggest that the hydrogen evolution mechanism proceeds via a single Co centre. Our findings highlight that streptavidin is a versatile host protein for the assembly of artificial hydrogenases and their activity can be fine‐tuned via mutagenesis.


Metal: Co
Ligand type: Bipyridine; Pyridine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: H2 evolution
Max TON: >1800
ee: ---
PDB: 6FRY
Notes: ---