Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

17 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A Cofactor Approach to Copper-Dependent Catalytic Antibodies

A strategy for the preparation of semisynthetic copper(II)-based catalytic metalloproteins is described in which a metal-binding bis-imidazole cofactor is incorporated into the combining site of the aldolase antibody 38C2. Antibody 38C2 features a large hydrophobic-combining site pocket with a highly nucleophilic lysine residue, LysH93, that can be covalently modified. A comparison of several lactone and anhydride reagents shows that the latter are the most effective and general derivatizing agents for the 38C2 Lys residue. A bis-imidazole anhydride (5) was efficiently prepared from N-methyl imidazole. The 38C2–5-Cu conjugate was prepared by either (i) initial derivatization of 38C2 with 5 followed by metallation with CuCl2, or (ii) precoordination of 5 with CuCl2 followed by conjugation with 38C2. The resulting 38C2–5-Cu conjugate was an active catalyst for the hydrolysis of the coordinating picolinate ester 11, following Michaelis–Menten kinetics [kcat(11) = 2.3 min−1 and Km(11) 2.2 mM] with a rate enhancement [kcat(11)kuncat(11)] of 2.1 × 105. Comparison of the second-order rate constants of the modified 38C2 and the Cu(II)-bis-imidazolyl complex k(6-CuCl2) gives a rate enhancement of 3.5 × 104 in favor of the antibody complex with an effective molarity of 76.7 M, revealing a significant catalytic benefit to the binding of the bis-imidazolyl ligand into 38C2.

Metal:

Cu

Ligand type:

Bisimidazol

Host protein:

Antibody 38C2

Anchoring strategy:

Covalent

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

---

A Designed Supramolecular Protein Assembly with In Vivo Enzymatic Activity

The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(kcat/Km)/kuncat] for ampicillin hydrolysis of 2.3 × 106 and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.

Metal:

Zn

Ligand type:

Amino acid

Host protein:

Cytochrome cb562

Anchoring strategy:

Dative

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

4U9E

Notes:

---

A Highly Specific Metal-Activated Catalytic Antibody

n/a

Metal:

Zn

Ligand type:

Undefined

Host protein:

IgG 84A3

Anchoring strategy:

Undefined

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

Substrate specificty

Artificial Metalloenzymes based on Protein Cavities: Exploring the Effect of Altering the Metal Ligand Attachment Position by Site Directed Mutagenesis

Metal:

Cu

Ligand type:

Phenanthroline

Anchoring strategy:

Covalent

Optimization:

Genetic

Max TON:

1 to 4

ee:

61 to 94

PDB:

---

Notes:

Varied attachment position

A Semisynthetic Metalloenzyme based on a Protein Cavity that Catalyzes the Enantioselective Hydrolysis of Ester and Amide Substrates

In an effort to prepare selective and efficient catalysts for ester and amide hydrolysis, we are designing systems that position a coordinated metal ion within a defined protein cavity. Here, the preparation of a protein-1,10-phenanthroline conjugate and the hydrolytic chemistry catalyzed by this construct are described. Iodoacetamido-1,10-phenanthroline was used to modify a unique cysteine residue in ALBP (adipocyte lipid binding protein) to produce the conjugate ALBP-Phen. The resulting material was characterized by electrospray mass spectrometry, UV/vis and fluorescence spectroscopy, gel filtration chromatography, and thiol titration. The stability of ALBP-Phen was evaluated by guanidine hydrochloride denaturation experiments, and the ability of the conjugate to bind Cu(II) was demonstrated by fluorescence spectroscopy. ALBP-Phen-Cu(II) catalyzes the enantioselective hydrolysis of several unactivated amino acid esters under mild conditions (pH 6.1, 25 °C) at rates 32−280-fold above the background rate in buffered aqueous solution. In 24 h incubations 0.70 to 7.6 turnovers were observed with enantiomeric excesses ranging from 31% ee to 86% ee. ALBP-Phen-Cu(II) also promotes the hydrolysis of an aryl amide substrate under more vigorous conditions (pH 6.1, 37 °C) at a rate 1.6 × 104-fold above the background rate. The kinetics of this amide hydrolysis reaction fit the Michaelis−Menten relationship characteristic of enzymatic processes. The rate enhancements for ester and amide hydrolysis reported here are 102−103 lower than those observed for free Cu(II) but comparable to those previously reported for Cu(II) complexes.

Metal:

Cu

Ligand type:

Phenanthroline

Anchoring strategy:

Covalent

Optimization:

---

Max TON:

1 to 8

ee:

39 to 86

PDB:

---

Notes:

---

Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering

Metal:

Zn

Ligand type:

Amino acid

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

>50

ee:

---

PDB:

3V1C

Notes:

---

Catalytic Properties and Specificity of the Extracellular Nuclease of Staphylococcus Aureus

Metal:

Sr

Ligand type:

Amino acid

Host protein:

Nuclease from S. aureus

Anchoring strategy:

Metal substitution

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

DNA cleavage

Computational Redesign of a Mononuclear Zinc Metalloenzyme for Organophosphate Hydrolysis

Metal:

Zn

Ligand type:

Amino acid

Anchoring strategy:

Dative

Optimization:

Genetic

Max TON:

>140

ee:

---

PDB:

3T1G

Notes:

kcat/KM ≈ 104 M-1*s-1

Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold

Metal:

Zn

Ligand type:

Amino acid

Host protein:

Glyoxalase II (Human)

Anchoring strategy:

Dative

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

2F50

Notes:

kcat/KM ≈ 184 M-1*s-1

Engineered Metal Regulation of Trypsin Specificity

Metal:

Zn

Ligand type:

Amino acid

Host protein:

Trypsin

Anchoring strategy:

Dative

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

Substrate specificty

Metal:

Ni

Ligand type:

Amino acid

Host protein:

Trypsin

Anchoring strategy:

Dative

Optimization:

Genetic

Max TON:

---

ee:

---

PDB:

---

Notes:

Substrate specificty

Generation of a Hybrid Sequence-Specific Single Stranded Deoxyribonuclease

Metal:

Ca

Ligand type:

Undefined

Host protein:

Staphylococcal nuclease

Anchoring strategy:

---

Optimization:

---

Max TON:

<1

ee:

---

PDB:

---

Notes:

Engineered sequence specificity

Hydrolytic Catalysis and Structural Stabilization in a Designed Metalloprotein

Metal:

Hg; Zn

Ligand type:

Amino acid

Host protein:

TRI peptide

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

>10

ee:

---

PDB:

3PBJ

Notes:

Zn ion for catalytic activity, Hg ion for structural stability of the ArM. PDB ID 3PBJ = Structure of an analogue.

Metal:

Hg; Zn

Ligand type:

Amino acid

Host protein:

TRI peptide

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

3PBJ

Notes:

Zn ion for catalytic activity, Hg ion for structural stability of the ArM, kcat/KM ≈ 1.8*105 M-1*s-1. PDB ID 3PBJ = Structure of an analogue.

Influence of Active Site Location on Catalytic Activity in De Novo-Designed Zinc Metalloenzymes

Metal:

Hg; Zn

Ligand type:

Amino acid

Host protein:

TRI peptide

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Max TON:

---

ee:

---

PDB:

3PBJ

Notes:

Influence of position of Zn and Hg ion on catalytic activity of the ArM tested. PDB ID 3PBJ = Structure of an analogue.

Metal Ion Dependent Binding of Sulphonamide to Carbonic Anhydrase

Metal:

Co

Ligand type:

Amino acid

Host protein:

Human carbonic anhydrase

Anchoring strategy:

Metal substitution

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

CO2 hydration

Metal:

Co

Ligand type:

Amino acid

Host protein:

Human carbonic anhydrase

Anchoring strategy:

Metal substitution

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

Ester cleavage

Neocarzinostatin-Based Hybrid Biocatalysts with a RNase like Activity

Metal:

Zn

Ligand type:

Poly-pyridine

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

kcat/KM = 13.6 M-1 * s-1

Rare Earth Metal Ions as Probes of Calcium Binding Sites in Proteins: Neodynium Acceleration of the Activation of Trypsinogen

Metal:

Nd

Ligand type:

Amino acid

Host protein:

Trypsin

Anchoring strategy:

Metal substitution

Optimization:

---

Max TON:

<1

ee:

---

PDB:

---

Notes:

---

Sequence-Specific Peptide Cleavage Catalyzed by an Antibody

Metal:

Zn

Ligand type:

Tetramine

Host protein:

Antibody 28F11

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Max TON:

400

ee:

---

PDB:

---

Notes:

---