17 publications

17 publications

A Cofactor Approach to Copper-Dependent Catalytic Antibodies

Janda, K.D.; Nicholas, K.M.

Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 2648-2653, 10.1073/pnas.052001099

A strategy for the preparation of semisynthetic copper(II)-based catalytic metalloproteins is described in which a metal-binding bis-imidazole cofactor is incorporated into the combining site of the aldolase antibody 38C2. Antibody 38C2 features a large hydrophobic-combining site pocket with a highly nucleophilic lysine residue, LysH93, that can be covalently modified. A comparison of several lactone and anhydride reagents shows that the latter are the most effective and general derivatizing agents for the 38C2 Lys residue. A bis-imidazole anhydride (5) was efficiently prepared from N-methyl imidazole. The 38C2–5-Cu conjugate was prepared by either (i) initial derivatization of 38C2 with 5 followed by metallation with CuCl2, or (ii) precoordination of 5 with CuCl2 followed by conjugation with 38C2. The resulting 38C2–5-Cu conjugate was an active catalyst for the hydrolysis of the coordinating picolinate ester 11, following Michaelis–Menten kinetics [kcat(11) = 2.3 min−1 and Km(11) 2.2 mM] with a rate enhancement [kcat(11)kuncat(11)] of 2.1 × 105. Comparison of the second-order rate constants of the modified 38C2 and the Cu(II)-bis-imidazolyl complex k(6-CuCl2) gives a rate enhancement of 3.5 × 104 in favor of the antibody complex with an effective molarity of 76.7 M, revealing a significant catalytic benefit to the binding of the bis-imidazolyl ligand into 38C2.


Metal: Cu
Ligand type: Bisimidazol
Host protein: Antibody 38C2
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: ---
ee: ---
PDB: ---
Notes: ---

A Designed Supramolecular Protein Assembly with In Vivo Enzymatic Activity

Tezcan, F.A.

Science 2014, 346, 1525-1528, 10.1126/science.1259680

The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(kcat/Km)/kuncat] for ampicillin hydrolysis of 2.3 × 106 and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.


Metal: Zn
Ligand type: Amino acid
Host protein: Cytochrome cb562
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 4U9E
Notes: ---

A Highly Specific Metal-Activated Catalytic Antibody

Janda, K.D.; Lerner, R.A.

J. Am. Chem. Soc. 1993, 115, 4906-4907, 10.1021/ja00064a068

n/a


Metal: Zn
Ligand type: Undefined
Host protein: IgG 84A3
Anchoring strategy: Undefined
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: Substrate specificty

Artificial Metalloenzymes based on Protein Cavities: Exploring the Effect of Altering the Metal Ligand Attachment Position by Site Directed Mutagenesis

Distefano, M.D.

Bioorg. Med. Chem. Lett. 1999, 9, 79-84, 10.1016/S0960-894X(98)00684-2

In an effort to construct catalysts with enzyme-like properties, we are employing a small, cavity-containing protein as a scaffold for the attachment of catalytic groups. In earlier work we demonstrated that a phenanthroline ligand could be introduced into the cavity of the protein ALBP and used to catalyze ester hydrolysis. To examine the effect of positioning the phenanthroline catalyst at different locations wthin the protein cavity, three new constucts — Phen60, Phen72 and Phen104 — were prepared. Each new conjugate was characterized by UV/vis spectroscopy, fluorescence spectroscopy, guanidine hydrochloride denaturation, gel filtration chromatography, and CD spectroscopy to confirm the preparation of the desired contruct. Analysis of reactions containing Ala-OiPr showed that Phen60 catalyzed ester hydrolysis with less selectivity than ALBP-Phen while Phen72 promoted this same reaction with higher selectivity. Reactions with Tyr-OMe were catalyzed with higher selectivity by Phen60 and more rapidly by Phen104. These results demonstrate that both the rates and selectivities of hydrolysis reactions catalyzed by these constructs are dependent on the precise site of attachment of the metal ligand within the protein cavity.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 1 to 4
ee: 61 to 94
PDB: ---
Notes: Varied attachment position

A Semisynthetic Metalloenzyme based on a Protein Cavity that Catalyzes the Enantioselective Hydrolysis of Ester and Amide Substrates

Distefano, M.D.

J. Am. Chem. Soc. 1997, 119, 11643-11652, 10.1021/JA970820K

In an effort to prepare selective and efficient catalysts for ester and amide hydrolysis, we are designing systems that position a coordinated metal ion within a defined protein cavity. Here, the preparation of a protein-1,10-phenanthroline conjugate and the hydrolytic chemistry catalyzed by this construct are described. Iodoacetamido-1,10-phenanthroline was used to modify a unique cysteine residue in ALBP (adipocyte lipid binding protein) to produce the conjugate ALBP-Phen. The resulting material was characterized by electrospray mass spectrometry, UV/vis and fluorescence spectroscopy, gel filtration chromatography, and thiol titration. The stability of ALBP-Phen was evaluated by guanidine hydrochloride denaturation experiments, and the ability of the conjugate to bind Cu(II) was demonstrated by fluorescence spectroscopy. ALBP-Phen-Cu(II) catalyzes the enantioselective hydrolysis of several unactivated amino acid esters under mild conditions (pH 6.1, 25 °C) at rates 32−280-fold above the background rate in buffered aqueous solution. In 24 h incubations 0.70 to 7.6 turnovers were observed with enantiomeric excesses ranging from 31% ee to 86% ee. ALBP-Phen-Cu(II) also promotes the hydrolysis of an aryl amide substrate under more vigorous conditions (pH 6.1, 37 °C) at a rate 1.6 × 104-fold above the background rate. The kinetics of this amide hydrolysis reaction fit the Michaelis−Menten relationship characteristic of enzymatic processes. The rate enhancements for ester and amide hydrolysis reported here are 102−103 lower than those observed for free Cu(II) but comparable to those previously reported for Cu(II) complexes.


Metal: Cu
Ligand type: Phenanthroline
Anchoring strategy: Covalent
Optimization: ---
Max TON: 1 to 8
ee: 39 to 86
PDB: ---
Notes: ---

Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering

Kuhlman, B.

Biochemistry 2012, 51, 3933-3940, 10.1021/bi201881p

Here we show that a recent computationally designed zinc-mediated protein interface is serendipitously capable of catalyzing carboxyester and phosphoester hydrolysis. Although the original motivation was to design a de novo zinc-mediated protein–protein interaction (called MID1-zinc), we observed in the homodimer crystal structure a small cleft and open zinc coordination site. We investigated if the cleft and zinc site at the designed interface were sufficient for formation of a primitive active site that can perform hydrolysis. MID1-zinc hydrolyzes 4-nitrophenyl acetate with a rate acceleration of 105 and a kcat/KM of 630 M–1 s–1 and 4-nitrophenyl phosphate with a rate acceleration of 104 and a kcat/KM of 14 M–1 s–1. These rate accelerations by an unoptimized active site highlight the catalytic power of zinc and suggest that the clefts formed by protein–protein interactions are well-suited for creating enzyme active sites. This discovery has implications for protein evolution and engineering: from an evolutionary perspective, three-coordinated zinc at a homodimer interface cleft represents a simple evolutionary path to nascent enzymatic activity; from a protein engineering perspective, future efforts in de novo design of enzyme active sites may benefit from exploring clefts at protein interfaces for active site placement.


Metal: Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: >50
ee: ---
PDB: 3V1C
Notes: ---

Catalytic Properties and Specificity of the Extracellular Nuclease of Staphylococcus Aureus

Cuatrecasas, P.

J. Biol. Chem. 1967, n/a

A spectrophotometric assay is described for staphylococcal nuclease, based on the increase in absorbance at 260 mp which accompanies deoxyribonucleic acid and RNA hy- drolysis. Initial velocities are proportional to enzyme con- centration over a 70-fold range. The enzyme has greater aflinity for DNA than for RNA, and activity is greater with heat-denatured DNA than with native DNA. No inhibitory products accumulate during the reaction. The enzyme is stable at pH values as low as 0.1, and in a concentration of 0.15 mg per ml there is no loss of activity after boiling (20 min). Dilute solutions are protected from heat inactivation by a mixture of albumin and Ca++ as well as by denatured DNA. The optimum pH for RNase and DNase activities is be- tween 9 and 10, depending on the Ca++ concentration. At higher pH values, less Ca+f is required. The inhibitory effect of high Ca+f concentrations is more pronounced at higher pH values. Considerable DNase but no RNase activity results if Ca++ is replaced by Sr+f, while Fe++ and C&f cause minimal activation. A number of heavy metal cations inhibit DNase and RNase activities competitively with Ca++; Hg++, Zn++, and Cd++ are the most potent of these. Activities resulting from combinations of DNA and RNA with Ca+f or Sr+f suggest that these substrates are hy- drolyzed by the same or closely related regions on the en- zyme. Enzyme activity toward DNA and RNA is strongly in- hibited by 5’-phosphoryl (not by 2’- or 3’-phosphoryl) deriva- tives of deoxyadenylic, adenylic, and deozythymidylic acids, and deozythymidine 3’,5’-diphosphate is the most po- tent inhibitor. High activity is obtained with polyadenylic acid compared to polyuridylic acid, polycytidylic acid, and RNA. These tidings are consistent with the known action of the enzyme (cleavage of the 5’-phosphoryl ester bond), and suggest that the differential activity toward DNA and RNA results at least in part from differences in the afhnity toward the constituent bases of these nucleic acids.


Metal: Sr
Ligand type: Amino acid
Host protein: Nuclease from S. aureus
Anchoring strategy: Metal substitution
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: PMID 4290246; DNA cleavage

Computational Redesign of a Mononuclear Zinc Metalloenzyme for Organophosphate Hydrolysis

Baker, D.

Nat. Chem. Biol. 2012, 8, 294-300, 10.1038/NChemBio.777

The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency (kcat/Km) of ∼104 M−1 s−1 after directed evolution. In the high-resolution crystal structure of the enzyme, all but one of the designed residues adopt the designed conformation. The designed enzyme efficiently catalyzes the hydrolysis of the RP isomer of a coumarinyl analog of the nerve agent cyclosarin, and it shows marked substrate selectivity for coumarinyl leaving groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a general approach for exploring their untapped catalytic potential for new reactivities.


Metal: Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Max TON: >140
ee: ---
PDB: 3T1G
Notes: kcat/KM ≈ 104 M-1*s-1

Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold

Kim, H.S.

Science 2006, 311, 535-538, 10.1126/science.1118953

The design of enzymes with new functions and properties has long been a goal in protein engineering. Here, we report a strategy to change the catalytic activity of an existing protein scaffold. This was achieved by simultaneous incorporation and adjustment of functional elements through insertion, deletion, and substitution of several active site loops, followed by point mutations to fine-tune the activity. Using this approach, we were able to introduce β-lactamase activity into the αβ/βα metallohydrolase scaffold of glyoxalase II. The resulting enzyme, evMBL8 (evolved metallo β-lactamase 8), completely lost its original activity and, instead, catalyzed the hydrolysis of cefotaxime with a (kcat /Km)app of 1.8 × 102 (mole/liter)–1 second–1, thus increasing resistance to Escherichia coli growth on cefotaxime by a factor of about 100.


Metal: Zn
Ligand type: Amino acid
Host protein: Glyoxalase II (Human)
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: 2F50
Notes: kcat/KM ≈ 184 M-1*s-1

Engineered Metal Regulation of Trypsin Specificity

Craik, C.S.

Biochemistry 1995, 34, 2172-2180, 10.1021/bi00007a010

Histidine substrate specificity has been engineered into trypsin by creating metal binding sites for Ni2+ and Zn2+ ions. The sites bridge the substrate and enzyme on the leaving-group side of the scissile bond. Application of simple steric and geometric criteria to a crystallographically derived enzyme- substrate model suggested that histidine specificity at the P2' position might be acheived by a tridentate site involving amino acid residues 143 and 151 of trypsin. Trypsin N143H/E151H hydrolyzes a P2'- His-containing peptide (AGPYAHSS) exclusively in the presence of nickel or zinc with a high level of catalytic efficiency. Since cleavage following the tyrosine residue is normally highly disfavored by trypsin, this result demonstrates that a metal cofactor can be used to modulate specificity in a designed fashion. The same geometric criteria applied in the primary SI binding pocket suggested that the single-site mutation D189H might effect metal-dependent His specificity in trypsin. However, kinetic and crystallographic analysis of this variant showed that the design was unsuccessful because His 189 rotates away from substrate causing a large perturbation in adjacent surface loops. This observation suggests that the reason specificity modification at the trypsin S1 site requires extensive mutagenesis is because the pocket cannot deform locally to accommodate alternate PI side chains. By taking advantage of the extended subsites, an alternate substrate specificity has been engineered into trypsin.


Metal: Zn
Ligand type: Amino acid
Host protein: Trypsin
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: ---
Notes: Substrate specificty

Metal: Ni
Ligand type: Amino acid
Host protein: Trypsin
Anchoring strategy: Dative
Optimization: Genetic
Max TON: ---
ee: ---
PDB: ---
Notes: Substrate specificty

Generation of a Hybrid Sequence-Specific Single Stranded Deoxyribonuclease

Schultz, P.G.

Science 1987, 238, 1401-1403, 10.1126/science.3685986

The relatively nonspecific single-stranded deoxyribonuclease, staphylococcal nuclease, was selectively fused to an oligonucleotide binding site of defined sequence to generate a hybrid enzyme. A cysteine was substituted for Lys116 in the enzyme by oligonucleotide-directed mutagenesis and coupled to an oligonucleotide that contained a 3'-thiol. The resulting hybrid enzyme cleaved single-stranded DNA at sites adjacent to the oligonucleotide binding site.


Metal: Ca
Ligand type: Undefined
Host protein: Staphylococcal nuclease
Anchoring strategy: ---
Optimization: ---
Max TON: <1
ee: ---
PDB: ---
Notes: Engineered sequence specificity

Hydrolytic Catalysis and Structural Stabilization in a Designed Metalloprotein

Pecoraro, V.L.

Nat. Chem. 2012, 4, 118-123, 10.1038/NCHEM.1201

Metal ions are an important part of many natural proteins, providing structural, catalytic and electron transfer functions. Reproducing these functions in a designed protein is the ultimate challenge to our understanding of them. Here, we present an artificial metallohydrolase, which has been shown by X-ray crystallography to contain two different metal ions—a Zn(II) ion, which is important for catalytic activity, and a Hg(II) ion, which provides structural stability. This metallohydrolase displays catalytic activity that compares well with several characteristic reactions of natural enzymes. It catalyses p-nitrophenyl acetate (pNPA) hydrolysis with an efficiency only ~100-fold less than that of human carbonic anhydrase (CA)II and at least 550-fold better than comparable synthetic complexes. Similarly, CO2 hydration occurs with an efficiency within ~500-fold of CAII. Although histidine residues in the absence of Zn(II) exhibit pNPA hydrolysis, miniscule apopeptide activity is observed for CO2 hydration. The kinetic and structural analysis of this first de novo designed hydrolytic metalloenzyme reveals necessary design features for future metalloenzymes containing one or more metals.


Metal: Hg; Zn
Ligand type: Amino acid
Host protein: TRI peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: >10
ee: ---
PDB: 3PBJ
Notes: Zn ion for catalytic activity, Hg ion for structural stability of the ArM. PDB ID 3PBJ = Structure of an analogue.

Metal: Hg; Zn
Ligand type: Amino acid
Host protein: TRI peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 3PBJ
Notes: Zn ion for catalytic activity, Hg ion for structural stability of the ArM, kcat/KM ≈ 1.8*105 M-1*s-1. PDB ID 3PBJ = Structure of an analogue.

Influence of Active Site Location on Catalytic Activity in De Novo-Designed Zinc Metalloenzymes

Pecoraro, V.L.

J. Am. Chem. Soc. 2013, 135, 5895-5903, 10.1021/ja401537t

While metalloprotein design has now yielded a number of successful metal-bound and even catalytically active constructs, the question of where to put a metal site along a linear, repetitive sequence has not been thoroughly addressed. Often several possibilities in a given sequence may exist that would appear equivalent but may in fact differ for metal affinity, substrate access, or protein dynamics. We present a systematic variation of active site location for a hydrolytically active ZnHis3O site contained within a de novo-designed three-stranded coiled coil. We find that the maximal rate, substrate access, and metal-binding affinity are dependent on the selected position, while catalytic efficiency for p-nitrophenyl acetate hydrolysis can be retained regardless of the location of the active site. This achievement demonstrates how efficient, tailor-made enzymes which control rate, pKa, substrate and solvent access (and selectivity), and metal-binding affinity may be realized. These findings may be applied to the more advanced de novo design of constructs containing secondary interactions, such as hydrogen-bonding channels. We are now confident that changes to location for accommodating such channels can be achieved without location-dependent loss of catalytic efficiency. These findings bring us closer to our ultimate goal of incorporating the secondary interactions we believe will be necessary in order to improve both active site properties and the catalytic efficiency to be competitive with the native enzyme, carbonic anhydrase.


Metal: Hg; Zn
Ligand type: Amino acid
Host protein: TRI peptide
Anchoring strategy: Dative
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 3PBJ
Notes: Influence of position of Zn and Hg ion on catalytic activity of the ArM tested. PDB ID 3PBJ = Structure of an analogue.

Metal Ion Dependent Binding of Sulphonamide to Carbonic Anhydrase

Coleman, J.E.

Nature 1967, 214, 193-194, 10.1038/214193a0

ACETAZOLAMIDE (2-acetylamino-1,3,4-thiadiazole-5-sulphonamide, ‘Diamox’) is the most potent known inhibitor of the zinc enzyme carbonic anhydrase. This communication reports the direct demonstration that binding of acetazolamide to human carbonic anhydrase requires the presence of a metal ion at the active site and that binding depends on the species of divalent metal ion present. Zinc (II) and cobalt (II) ions are the only ions which induce the formation of very stable acetazolamide carbonic anhydrase complexes and are also the ions which most effectively catalyse the hydration of carbon dioxide and the hydrolysis of p-nitrophenyl acetate. Metal-binding monodentate ions, CN−, HS−, OCN−, and N3−, known as effective carbonic anhydrase inhibitors, compete for the acetazolamide binding site of the zinc enzyme.


Metal: Co
Ligand type: Amino acid
Host protein: Human carbonic anhydrase
Anchoring strategy: Metal substitution
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: CO2 hydration

Metal: Co
Ligand type: Amino acid
Host protein: Human carbonic anhydrase
Anchoring strategy: Metal substitution
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: Ester cleavage

Neocarzinostatin-Based Hybrid Biocatalysts with a RNase like Activity

Mahy, J.-P.; Ricoux, R.

Bioorg. Med. Chem. 2014, 22, 5678-5686, 10.1016/j.bmc.2014.05.063

A new zinc(II)-cofactor coupled to a testosterone anchor, zinc(II)-N,N-bis(2-pyridylmethyl)-1,3-diamino-propa-2-ol-N′(17′-succinimidyltestosterone) (Zn-Testo-BisPyPol) 1-Zn has been synthesized and fully characterized. It has been further associated with a neocarzinostatin variant, NCS-3.24, to generate a new artificial metalloenzyme following the so-called ‘Trojan horse’ strategy. This new 1-Zn-NCS-3.24 biocatalyst showed an interesting catalytic activity as it was found able to catalyze the hydrolysis of the RNA model HPNP with a good catalytic efficiency (kcat/KM = 13.6 M−1 s−1 at pH 7) that places it among the best artificial catalysts for this reaction. Molecular modeling studies showed that a synergy between the binding of the steroid moiety and that of the BisPyPol into the protein binding site can explain the experimental results, indicating a better affinity of 1-Zn for the NCS-3.24 variant than testosterone and testosterone-hemisuccinate themselves. They also show that the artificial cofactor entirely fills the cavity, the testosterone part of 1-Zn being bound to one the two subdomains of the protein providing with good complementarities whereas its metal ion remains widely exposed to the solvent which made it a valuable tool for the catalysis of hydrolysis reactions, such as that of HPNP. Some possible improvements in the ‘Trojan horse’ strategy for obtaining better catalysts of selective reactions will be further studied.


Metal: Zn
Ligand type: Poly-pyridine
Anchoring strategy: Supramolecular
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: kcat/KM = 13.6 M-1 * s-1

Rare Earth Metal Ions as Probes of Calcium Binding Sites in Proteins: Neodynium Acceleration of the Activation of Trypsinogen

Birnbaum, E.R.; Darnall, D.W.

J. Biol. Chem. 1970, n/a

The rate of activation of the conversion of trypsinogen to trypsin has been found to be greatly accelerated by the neodymium(III) ion. The similarity of this process to the calcium(II) ion activation suggests that both metal ions bind at identical sites in trypsinogen. The rate of activation in the presence of the neodymium ion is much greater than that of the calcium ion, probably reflecting the increased stability constant of the neodymium-protein complex. In contrast to the calcium ion, however, neodymium(III) can be scrutinized by a variety of spectral and magnetic techniques which should reveal information concerning the calcium ion binding sites in proteins. Since the chemistry and the range of sires of the rare earth metal ions are so similar to that of the calcium ion, it is suggested that generally these ions should make good replacement ions for probing the calcium ion binding sites of proteins and enzymes.


Metal: Nd
Ligand type: Amino acid
Host protein: Trypsin
Anchoring strategy: Metal substitution
Optimization: ---
Max TON: <1
ee: ---
PDB: ---
Notes: PMID 5484822

Sequence-Specific Peptide Cleavage Catalyzed by an Antibody

Lerner, R.A.

Science 1989, 243, 1184-1188, 10.1126/science.2922606

Monoclonal antibodies have been induced that are capable of catalyzing specific hydrolysis of the Gly-Phe bond of peptide substrates at neutral pH with a metal complex cofactor. The antibodies were produced by immunizing with a Co(III) triethylenetetramine (trien)-peptide hapten. These antibodies as a group are capable of binding trien complexes of not only Co(III) but also of numerous other metals. Six peptides were examined as possible substrates with the antibodies and various metal complexes. Two of these peptides were cleaved by several of the antibodies. One antibody was studied in detail, and cleavage was observed for the substrates with the trien complexes of Zn(II), Ga(III), Fe(III), In(III), Cu(II), Ni(II), Lu(III), Mg(II), or Mn(II) as cofactors. A turnover number of 6 x 10(-4) per second was observed for these substrates. These results demonstrate the feasibility of the use of cofactor-assisted catalysis in an antibody binding site to accomplish difficult chemical transformations.


Metal: Zn
Ligand type: Tetramine
Host protein: Antibody 28F11
Anchoring strategy: Supramolecular
Optimization: Chemical
Max TON: 400
ee: ---
PDB: ---
Notes: ---