2 publications
-
A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell
-
Nat. Commun. 2018, 9, 10.1038/s41467-018-04440-0
Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.
Notes: ---
-
Catalytic Hydrogenation of Itaconic Acid in a Biotinylated Pyrphos-Rhodium(I) System in a Protein Cavity
-
Tetrahedron: Asymmetry 1999, 10, 1887-1893, 10.1016/S0957-4166(99)00193-7
The construction of a chiral catalyst system embedded at a specific site in a protein has been studied. The preparation of the biotinylated Pyrphos–Rh(I) complex attached to the binding site in avidin and its application to the asymmetric hydrogenation of itaconic acid have been investigated. By introducing the chiral Pyrphos–Rh(I) moiety into the constrained environment of the protein cavity it was found that the enantioselectivity of the system was significantly influenced by the tertiary conformation within the avidin cavity. The effects of reaction conditions such as temperature, hydrogen pressure, and the pH value of the buffer on enantioselectivity are reported.
Metal: RhLigand type: PhosphineHost protein: Avidin (Av)Anchoring strategy: SupramolecularOptimization: ---Notes: ---