23 publications

23 publications

A Metal Ion Regulated Artificial Metalloenzyme

Roelfes, G.

Dalton Trans. 2017, 46, 4325-4330, 10.1039/C7DT00533D

An artificial metalloenzyme containing both a regulatory and a catalytic domain is selectively activated in presence of Fe2+ ions.


Metal: Fe
Ligand type: Bypyridine
Host protein: LmrR
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 14
ee: 75
PDB: ---
Notes: ---

Metal: Zn
Ligand type: Bypyridine
Host protein: LmrR
Anchoring strategy: Covalent
Optimization: Genetic
Max TON: 6
ee: 80
PDB: ---
Notes: ---

Artificial Metalloenzymes

Review

Ward, T.R.

Effects of Nanoconfinement on Catalysis 2017, 49-82, 10.1007/978-3-319-50207-6_3

While chemists are developing confined environments for catalysis, nature has evolved highly elaborate compartments to carry out reactions. Proteins offer such catalytic nano-environments that accept specific substrates to yield highly enantioenriched products. Metalloenzymes form a subclass that combines the functional diversity of proteins with the promiscuous activities of metals. In recent years, a variety of artificial metalloenzymes (ArMs) has been created upon incorporation of metal complexes into a protein scaffold. The following chapter discusses some of the protein scaffolds exploited for the creation of artificial metalloenzymes. Focus is laid on artificial metalloenzymes that catalyze abiotic and asymmetric reactions. Each subchapter presents the unique characteristics of a scaffold followed by a description of the reactions that were performed with it.


Notes: Book chapter

A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase

Fujieda, N.; Itoh, S.

J. Am. Chem. Soc. 2017, 139, 5149-5155, 10.1021/jacs.7b00675

Thermally stable TM1459 cupin superfamily protein from Thermotoga maritima was repurposed as an osmium (Os) peroxygenase by metal-substitution strategy employing the metal-binding promiscuity. This novel artificial metalloenzyme bears a datively bound Os ion supported by the 4-histidine motif. The well-defined Os center is responsible for not only the catalytic activity but also the thermodynamic stability of the protein folding, leading to the robust biocatalyst (Tm ≈ 120 °C). The spectroscopic analysis and atomic resolution X-ray crystal structures of Os-bound TM1459 revealed two types of donor sets to Os center with octahedral coordination geometry. One includes trans-dioxide, OH, and mer-three histidine imidazoles (O3N3 donor set), whereas another one has four histidine imidazoles plus OH and water molecule in a cis position (O2N4 donor set). The Os-bound TM1459 having the latter donor set (O2N4 donor set) was evaluated as a peroxygenase, which was able to catalyze cis-dihydroxylation of several alkenes efficiently. With the low catalyst loading (0.01% mol), up to 9100 turnover number was achieved for the dihydroxylation of 2-methoxy-6-vinyl-naphthalene (50 mM) using an equivalent of H2O2 as oxidant at 70 °C for 12 h. When octene isomers were dihydroxylated in a preparative scale for 5 h (2% mol cat.), the terminal alkene octene isomers was converted to the corresponding diols in a higher yield as compared with the internal alkenes. The result indicates that the protein scaffold can control the regioselectivity by the steric hindrance. This protein scaffold enhances the efficiency of the reaction by suppressing disproportionation of H2O2 on Os reaction center. Moreover, upon a simple site-directed mutagenesis, the catalytic activity was enhanced by about 3-fold, indicating that Os-TM1459 is evolvable nascent osmium peroxygenase.


Metal: Os
Ligand type: Amino acid
Host protein: TM1459 cupin
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: Dihydroxylation
Max TON: 45
ee: ---
PDB: 5WSE
Notes: Exclusively cis dihydroxylation product obtained

Metal: Os
Ligand type: Amino acid
Host protein: TM1459 cupin
Anchoring strategy: Metal substitution
Optimization: Genetic
Reaction: Dihydroxylation
Max TON: 45
ee: ---
PDB: 5WSF
Notes: Exclusively cis dihydroxylation product obtained

Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

Hartwig, J.F.

ACS Cent. Sci. 2017, 3, 302-308, 10.1021/acscentsci.6b00391

Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C–H bond. We postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiple modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, >70:1 dr, >75% yield, and ∼10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Together, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.


Metal: Ir
Ligand type: Methyl; Porphyrin
Host protein: Cytochrome P450 (CYP119)
Anchoring strategy: Metal substitution
Optimization: Chemical & genetic
Reaction: Cyclopropanation
Max TON: 10181
ee: 98
PDB: ---
Notes: Selectivity for cis product (cis/trans = 90:1)

Catalytic Cyclopropanation by Myoglobin Reconstituted with Iron Porphycene: Acceleration of Catalysis due to Rapid Formation of the Carbene Species

Hasegawa, J.-Y.; Lehnert, N.

J. Am. Chem. Soc. 2017, 139, 17265-17268, 10.1021/jacs.7b10154

Myoglobin reconstituted with iron porphycene catalyzes the cyclopropanation of styrene with ethyl diazoacetate. Compared to native myoglobin, the reconstituted protein significantly accelerates the catalytic reaction and the kcat/Km value is 26-fold enhanced. Mechanistic studies indicate that the reaction of the reconstituted protein with ethyl diazoacetate is 615-fold faster than that of native myoglobin. The metallocarbene species reacts with styrene with the apparent second-order kinetic constant of 28 mM–1 s–1 at 25 °C. Complementary theoretical studies support efficient carbene formation by the reconstituted protein that results from the strong ligand field of the porphycene and fewer intersystem crossing steps relative to the native protein. From these findings, the substitution of the cofactor with an appropriate metal complex serves as an effective way to generate a new biocatalyst.


Metal: Fe
Ligand type: Amino acid; Porphycene
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: ---
Reaction: Cyclopropanation
Max TON: ---
ee: ---
PDB: ---
Notes: Cyclopropanation of styrene with ethyl diazoacetate: kcat/KM = 1.3 mM-1 * s-1, trans/cis = 99:1

Chalcogenide Substitution in the [2Fe] Cluster of [FeFe]-Hydrogenases Conserves High Enzymatic Activity

Apfel, U.-P.; Happe, T.

Dalton Trans. 2017, 46, 16947-16958, 10.1039/C7DT03785F

Combination of biological and chemical methods allow for creation of [FeFe]-hydrogenases with an artificial synthetic cofactor.


Metal: Fe
Ligand type: CN; CO; Diselenolate
Anchoring strategy: Dative
Optimization: Chemical
Reaction: H2 evolution
Max TON: ---
ee: ---
PDB: 5OEF
Notes: ---

Chemoselective, Enzymatic C−H Bond Amination Catalyzed by a Cytochrome P450 Containing an Ir(Me)-PIX Cofactor

Hartwig, J.F.

J. Am. Chem. Soc. 2017, 139, 1750-1753, 10.1021/jacs.6b11410

Cytochrome P450 enzymes have been engineered to catalyze abiological C–H bond amination reactions, but the yields of these reactions have been limited by low chemoselectivity for the amination of C–H bonds over competing reduction of the azide substrate to a sulfonamide. Here we report that P450s derived from a thermophilic organism and containing an iridium porphyrin cofactor (Ir(Me)-PIX) in place of the heme catalyze enantioselective intramolecular C−H bond amination reactions of sulfonyl azides. These reactions occur with chemoselectivity for insertion of the nitrene units into C−H bonds over reduction of the azides to the sulfonamides that is higher and with substrate scope that is broader than those of enzymes containing iron porphyrins. The products from C−H amination are formed in up to 98% yield and ∼300 TON. In one case, the enantiomeric excess reaches 95:5 er, and the reactions can occur with divergent site selectivity. The chemoselectivity for C–H bond amination is greater than 20:1 in all cases. Variants of the Ir(Me)-PIX CYP119 displaying these properties were identified rapidly by evaluating CYP119 mutants containing Ir(Me)-PIX in cell lysates, rather than as purified enzymes. This study sets the stage to discover suitable enzymes to catalyze challenging C–H amination reactions.


Metal: Ir
Ligand type: Methyl; Porphyrin
Host protein: Cytochrome P450 (CYP119)
Anchoring strategy: Metal substitution
Optimization: Chemical & genetic
Reaction: C-H activation
Max TON: 294
ee: 26
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Methyl; Porphyrin
Host protein: Cytochrome P450 (CYP119)
Anchoring strategy: Metal substitution
Optimization: Chemical & genetic
Reaction: C-H activation
Max TON: 192
ee: 95
PDB: ---
Notes: ---

Construction and In Vivo Assembly of a Catalytically Proficient and Hyperthermostable De Novo Enzyme

Anderson, J.L.R.

Nat. Commun. 2017, 8, 10.1038/s41467-017-00541-4

Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.


Metal: Fe
Ligand type: Porphyrin
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Oxidation of 2,2′-azino-bis(3-ethylbenzothiazo-line-6-sulfonic acid (ABTS)

Cross-Linked Artificial Enzyme Crystals as Heterogeneous Catalysts for Oxidation Reactions

Cavazza, C.; Ménage, S.

J. Am. Chem. Soc. 2017, 139, 17994-18002, 10.1021/jacs.7b09343

Designing systems that merge the advantages of heterogeneous catalysis, enzymology, and molecular catalysis represents the next major goal for sustainable chemistry. Cross-linked enzyme crystals display most of these essential assets (well-designed mesoporous support, protein selectivity, and molecular recognition of substrates). Nevertheless, a lack of reaction diversity, particularly in the field of oxidation, remains a constraint for their increased use in the field. Here, thanks to the design of cross-linked artificial nonheme iron oxygenase crystals, we filled this gap by developing biobased heterogeneous catalysts capable of oxidizing carbon–carbon double bonds. First, reductive O2 activation induces selective oxidative cleavage, revealing the indestructible character of the solid catalyst (at least 30 000 turnover numbers without any loss of activity). Second, the use of 2-electron oxidants allows selective and high-efficiency hydroxychlorination with thousands of turnover numbers. This new technology by far outperforms catalysis using the inorganic complexes alone, or even the artificial enzymes in solution. The combination of easy catalyst synthesis, the improvement of “omic” technologies, and automation of protein crystallization makes this strategy a real opportunity for the future of (bio)catalysis.


Metal: Fe
Ligand type: ---
Host protein: NikA
Anchoring strategy: Supramolecular
Optimization: Chemical
Max TON: 28000
ee: ---
PDB: 5ON0
Notes: Cross-Linked Enzyme Crystals (CLEC) as catalysts.

Metal: Fe
Ligand type: ---
Host protein: NikA
Anchoring strategy: Supramolecular
Optimization: Chemical
Max TON: 5900
ee: ---
PDB: 5ON0
Notes: Cross-Linked Enzyme Crystals (CLEC) as catalysts.

Cross-Regulation of an Artificial Metalloenzyme

Ward, T.R.

Angew. Chem. Int. Ed. 2017, 56, 10156-10160, 10.1002/anie.201702181

Cross‐regulation of complex biochemical reaction networks is an essential feature of living systems. In a biomimetic spirit, we report on our efforts to program the temporal activation of an artificial metalloenzyme via cross‐regulation by a natural enzyme. In the presence of urea, urease slowly releases ammonia that reversibly inhibits an artificial transfer hydrogenase. Addition of an acid, which acts as fuel, allows to maintain the system out of equilibrium.


Metal: Ir
Ligand type: Cp*; Phenanthroline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 96
ee: ---
PDB: ---
Notes: Cross-regulated reduction of the antibiotic enrofloxacin by an ArM.

Design of an Enantioselective Artificial Metallo-Hydratase Enzyme Containing an Unnatural Metal-Binding Amino Acid

Maréchal, J.-D.; Roelfes, G.

Chem. Sci. 2017, 8, 7228-7235, 10.1039/C7SC03477F

The design of artificial metalloenzymes is a challenging, yet ultimately highly rewarding objective because of the potential for accessing new-to-nature reactions. One of the main challenges is identifying catalytically active substrate–metal cofactor–host geometries. The advent of expanded genetic code methods for the in vivo incorporation of non-canonical metal-binding amino acids into proteins allow to address an important aspect of this challenge: the creation of a stable, well-defined metal-binding site. Here, we report a designed artificial metallohydratase, based on the transcriptional repressor lactococcal multidrug resistance regulator (LmrR), in which the non-canonical amino acid (2,2′-bipyridin-5yl)alanine is used to bind the catalytic Cu(II) ion. Starting from a set of empirical pre-conditions, a combination of cluster model calculations (QM), protein–ligand docking and molecular dynamics simulations was used to propose metallohydratase variants, that were experimentally verified. The agreement observed between the computationally predicted and experimentally observed catalysis results demonstrates the power of the artificial metalloenzyme design approach presented here.


Metal: Cu
Ligand type: Bipyridine
Host protein: LmrR
Anchoring strategy: ---
Optimization: Genetic
Reaction: Hydration
Max TON: 9
ee: 64
PDB: ---
Notes: ---

Diruthenium Diacetate-Catalyzed Aerobic Oxidation of Hydroxylamines and Improved Chemoselectivity by Immobilization to Lysozyme

Cardona, F.; Goti, A.; Messori, L.

ChemCatChem 2017, 9, 4225-4230, 10.1002/cctc.201701083

A new green method for the preparation of nitrones through the aerobic oxidation of the corresponding N,N‐disubstituted hydroxylamines has been developed upon exploring the catalytic activity of a diruthenium catalyst, that is, [Ru2(OAc)4Cl]), in aqueous or alcoholic solution under mild reaction conditions (0.1 to 1 mol % catalyst, air, 50 °C) and reasonable reaction times. Notably, the catalytic activity of the dimetallic centre is retained after its binding to the small protein lysozyme. Interestingly, this new artificial metalloenzyme conferred complete chemoselectivity to the oxidation of cyclic hydroxylamines, in contrast to the diruthenium catalyst.


Metal: Ru
Ligand type: Amino acid; OAc
Host protein: Lysozyme
Anchoring strategy: Dative
Optimization: Chemical
Max TON: 1000
ee: ---
PDB: ---
Notes: ---

Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes

Jarvis, A.G.; Kamer, P.C.J.

Angew. Chem. Int. Ed. 2017, 129, 13784-13788, 10.1002/ange.201705753


Metal: Rh
Ligand type: Acac; Diphenylphosphine
Anchoring strategy: Cystein-maleimide
Optimization: Chemical & genetic
Reaction: Hydroformylation
Max TON: 409
ee: ---
PDB: ---
Notes: Selectivity for the linear product over the branched product

Enzyme stabilization via computationally guided protein stapling

Fasan, R.; Khare, S.D.

Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 12472-12477, 10.1073/pnas.1708907114

Thermostabilization represents a critical and often obligatory step toward enhancing the robustness of enzymes for organic synthesis and other applications. While directed evolution methods have provided valuable tools for this purpose, these protocols are laborious and time-consuming and typically require the accumulation of several mutations, potentially at the expense of catalytic function. Here, we report a minimally invasive strategy for enzyme stabilization that relies on the installation of genetically encoded, nonreducible covalent staples in a target protein scaffold using computational design. This methodology enables the rapid development of myoglobin-based cyclopropanation biocatalysts featuring dramatically enhanced thermostability (ΔTm = +18.0 °C and ΔT50 = +16.0 °C) as well as increased stability against chemical denaturation [ΔCm (GndHCl) = 0.53 M], without altering their catalytic efficiency and stereoselectivity properties. In addition, the stabilized variants offer superior performance and selectivity compared with the parent enzyme in the presence of a high concentration of organic cosolvents, enabling the more efficient cyclopropanation of a water-insoluble substrate. This work introduces and validates an approach for protein stabilization which should be applicable to a variety of other proteins and enzymes.


Metal: Fe
Ligand type: Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Cyclopropanation
Max TON: 4740
ee: 99.2
PDB: ---
Notes: Stapling of protein via thioether bond formation between the noncanonical amino acid O-2-bromoethyl tyrosine and cysteine

Exploiting and Engineering Hemoproteins for Abiological Carbene and Nitrene Transfer Reactions

Review

Arnold, F.H.; Fasan, R.

Curr. Opin. Biotechnol. 2017, 47, 102-111, 10.1016/j.copbio.2017.06.005

The surge in reports of heme-dependent proteins as catalysts for abiotic, synthetically valuable carbene and nitrene transfer reactions dramatically illustrates the evolvability of the protein world and our nascent ability to exploit that for new enzyme chemistry. We highlight the latest additions to the hemoprotein-catalyzed reaction repertoire (including carbene Si–H and C–H insertions, Doyle–Kirmse reactions, aldehyde olefinations, azide-to-aldehyde conversions, and intermolecular nitrene C–H insertion) and show how different hemoprotein scaffolds offer varied reactivity and selectivity. Preparative-scale syntheses of pharmaceutically relevant compounds accomplished with these new catalysts are beginning to demonstrate their biotechnological relevance. Insights into the determinants of enzyme lifetime and product yield are providing generalizable cues for engineering heme-dependent proteins to further broaden the scope and utility of these non-natural activities.


Notes: ---

Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo-β-Lactamases

Song, W.J.; Tezcan, F.A.

J. Am. Chem. Soc. 2017, 139, 16772-16779, 10.1021/jacs.7b08981

We describe the design and evolution of catalytic hydrolase activity on a supramolecular protein scaffold, Zn4:C96RIDC14, which was constructed from cytochrome cb562 building blocks via a metal-templating strategy. Previously, we reported that Zn4:C96RIDC14 could be tailored with tripodal (His/His/Glu), unsaturated Zn coordination motifs in its interfaces to generate a variant termed Zn8:A104AB34, which in turn displayed catalytic activity for the hydrolysis of activated esters and β-lactam antibiotics. Zn8:A104AB34 was subsequently subjected to directed evolution via an in vivo selection strategy, leading to a variant Zn8:A104/G57AB34 which displayed enzyme-like Michaelis–Menten behavior for ampicillin hydrolysis. A criterion for the evolutionary utility or designability of a new protein structure is its ability to accommodate different active sites. With this in mind, we examined whether Zn4:C96RIDC14 could be tailored with alternative Zn coordination sites that could similarly display evolvable catalytic activities. We report here a detailed structural and functional characterization of new variant Zn8:AB54, which houses similar, unsaturated Zn coordination sites to those in Zn8:A104/G57AB34, but in completely different microenvironments. Zn8:AB54 displays Michaelis–Menten behavior for ampicillin hydrolysis without any optimization. Yet, the subsequent directed evolution of Zn8:AB54 revealed limited catalytic improvement, which we ascribed to the local protein rigidity surrounding the Zn centers and the lack of evolvable loop structures nearby. The relaxation of local rigidity via the elimination of adjacent disulfide linkages led to a considerable structural transformation with a concomitant improvement in β-lactamase activity. Our findings reaffirm previous observations that the delicate balance between protein flexibility and stability is crucial for enzyme design and evolution.


Metal: Zn
Ligand type: Amino acid
Host protein: Zn8:AB54
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Hydrolysis
Max TON: ---
ee: ---
PDB: 5XZI
Notes: Supramolecular protein scaffold constructed from cytochrome cb562 building blocks, Ampicillin hydrolysis: kcat/KM = 130 min-1 * M-1

Metal: Zn
Ligand type: Amino acid
Host protein: Zn8:AB54 (mutant C96T)
Anchoring strategy: Dative
Optimization: Genetic
Reaction: Hydrolysis
Max TON: ---
ee: ---
PDB: 5XZJ
Notes: Supramolecular protein scaffold constructed from cytochrome cb562 building blocks, Ampicillin hydrolysis: kcat/KM = 210 min-1 * M-1

Manganese(V) Porphycene Complex Responsible for Inert C–H Bond Hydroxylation in a Myoglobin Matrix

Oohora, K.

J. Am. Chem. Soc. 2017, 139, 18460-18463, 10.1021/jacs.7b11288

A mechanistic study of H2O2-dependent C–H bond hydroxylation by myoglobin reconstituted with a manganese porphycene was carried out. The X-ray crystal structure of the reconstituted protein obtained at 1.5 Å resolution reveals tight incorporation of the complex into the myoglobin matrix at pH 8.5, the optimized pH value for the highest turnover number of hydroxylation of ethylbenzene. The protein generates a spectroscopically detectable two-electron oxidative intermediate in a reaction with peracid, which has a half-life up to 38 s at 10 °C. Electron paramagnetic resonance spectra of the intermediate with perpendicular and parallel modes are silent, indicating formation of a low-spin MnV-oxo species. In addition, the MnV-oxo species is capable of promoting the hydroxylation of sodium 4-ethylbenzenesulfonate under single turnover conditions with an apparent second-order rate constant of 2.0 M–1 s–1 at 25 °C. Furthermore, the higher bond dissociation enthalpy of the substrate decreases the rate constant, in support of the proposal that the H-abstraction is one of the rate-limiting steps. The present engineered myoglobin serves as an artificial metalloenzyme for inert C–H bond activation via a high-valent metal species similar to the species employed by native monooxygenases such as cytochrome P450.


Metal: Mn
Ligand type: Amino acid; Porphycene
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: ---
Reaction: Hydroxylation
Max TON: 13
ee: ---
PDB: 5YL3
Notes: ---

Orthogonal Expression of an Artificial Metalloenzyme for Abiotic Catalysis

Brustad, E.M.

ChemBioChem 2017, 18, 2380-2384, 10.1002/cbic.201700397

Engineering an (Ir)regular cytochrome P450: Mutations within the heme‐binding pocket of a cytochrome P450 enabled the selective incorporation of an artificial Ir‐porphyrin cofactor into the protein, in cells. This orthogonal metalloprotein showed enhanced behavior in unnatural carbene‐mediated cyclopropanation of aliphatic and electron‐deficient olefins.


Metal: Ir
Ligand type: Methyl; Porphyrin
Host protein: Cytochrome BM3h
Anchoring strategy: Reconstitution
Optimization: Chemical & genetic
Reaction: Cyclopropanation
Max TON: 339
ee: 97
PDB: ---
Notes: Reaction of styrene with ethyl diazoacetate, cis:trans = 29:71

Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins

Borovik, A.S.

J. Am. Chem. Soc. 2017, 139, 17289-17292, 10.1021/jacs.7b10452

Copper–hydroperoxido species (CuII–OOH) have been proposed to be key intermediates in biological and synthetic oxidations. Using biotin–streptavidin (Sav) technology, artificial copper proteins have been developed to stabilize a CuII–OOH complex in solution and in crystallo. Stability is achieved because the Sav host provides a local environment around the Cu–OOH that includes a network of hydrogen bonds to the hydroperoxido ligand. Systematic deletions of individual hydrogen bonds to the Cu–OOH complex were accomplished using different Sav variants and demonstrated that stability is achieved with a single hydrogen bond to the proximal O-atom of the hydroperoxido ligand: changing this interaction to only include the distal O-atom produced a reactive variant that oxidized an external substrate.


Metal: Cu
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Oxidation
Max TON: ---
ee: ---
PDB: 6ANX
Notes: ---

Selective C–H Bond Functionalization Using Repurposed or Artificial Metalloenzymes

Review

Lewis, J.C.

Curr. Opin. Chem. Biol. 2017, 37, 48-55, 10.1016/j.cbpa.2016.12.027

Catalytic CH bond functionalization has become an important tool for organic synthesis. Metalloenzymes offer a solution to one of the foremost challenges in this field, site-selective CH functionalization, but they are only capable of catalyzing a subset of the CH functionalization reactions known to small molecule catalysts. To overcome this limitation, metalloenzymes have been repurposed by exploiting the reactivity of their native cofactors toward substrates not found in nature. Additionally, new reactivity has been accessed by incorporating synthetic metal cofactors into protein scaffolds to form artificial metalloenzymes. The selectivity and activity of these catalysts has been tuned using directed evolution. This review covers the recent progress in developing and optimizing both repurposed and artificial metalloenzymes as catalysts for selective CH bond functionalization.


Notes: ---

Stereoselective Sulfoxidation Catalyzed by Achiral Schiff Base Complexes in the Presence of Serum Albumin in Aqueous Media

Bian, H.-D.; Huang, F.-P.

Tetrahedron: Asymmetry 2017, 28, 1700-1707, 10.1016/j.tetasy.2017.10.021

Four coordination complexes ML derived from an achiral Schiff base ligand (H2L = 2,2′-[(1,2-ethanediyl)bis(nitrilopropylidyne)]bisphenol) have been synthesized and characterized. A method is described for the enantioselective oxidation of a series of aryl alkyl sulfides using the coordination complexes in the presence of serum albumins (SAs) in an aqueous medium at ambient temperature. The mixture of metal complexes with serum albumins is useful for inducing asymmetric catalysis. The complex, albumin source and substrate influence stereoselective sulfoxidation. At optimal pH with the appropriate oxidant, some of ML/SA systems are identified as very efficient catalysts, giving the corresponding sulfoxides in excellent chemical yield (up to 100%) and good enantioselectivity (up to 94% ee) in certain cases. UV–visible spectroscopic data provide evidence that stronger binding between the complex and serum albumin lead to higher enantioselectivity.


Metal: Co
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: ~60
ee: 59
PDB: ---
Notes: ---

Supramolecular Anchoring of NCN-Pincer Palladium Complexes into a β-Barrel Protein Host: Molecular-Docking and Reactivity Insights

Salmain, M.; Thorimbert, S.

Eur. J. Inorg. Chem. 2017, 2017, 3622-3634, 10.1002/ejic.201700365

Several prochiral NCN‐pincer complexes of palladium(II), with hemilabile ligands and a long aliphatic chain, were synthesized and characterized spectroscopically. In some of the complexes, the presence of two different substituents on the N donor atoms made them stereogenic, so that they were isolated as a mixture of diastereoisomers, which could be differentiated by 1H NMR spectroscopy. Binding of some of these complexes to bovine β‐lactoglobin by insertion within its inner cavity was theoretically investigated by molecular‐docking simulations and was experimentally confirmed by CD spectroscopy. Adjunction of H‐bond donor substituents on the ligand framework gave more‐stable supramolecular protein–complex assemblies. These constructs were shown to catalyze aldol condensation reactions in aqueous media, affording, in some cases, the less‐favorable cis product. Since the corresponding complexes exclusively gave the trans product in the absence of β‐lactoglobulin, this unusual diastereoselectivity was ensued by the second sphere of coordination brought by the protein host.


Metal: Pd
Ligand type: NCN-Pincer (amines)
Host protein: β-lactoglobulin (βLG)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Aldol condensation
Max TON: 4.9
ee: 0
PDB: ---
Notes: Aldol condensation of methyl isocyanoacetate and benzaldehyde (trans/cis = 38:62)

Supramolecular Enzyme Mimics

Review

Okamoto, Y.; Ward, T.R.

Comprehensive Supramolecular Chemistry II 2017, 459-510, 10.1016/B978-0-12-409547-2.12551-X

Artificial metalloenzymes result from the incorporation of an organometallic moiety within a macromolecule. In this article, we review the field of artificial metalloenzymes. These are classified according to the host that accommodates the organometallic cofactor: cyclodextrins (“Cyclodextrin-Based Artificial Enzymes” section), ligands bearing a substrate recognition motif (“Artificial Enzymes With Ligands Bearing Substrate Recognition Motifs” section), supramolecular cages (“Cage Molecules as Artificial Enzymes” section), nucleic acids (“DNA-Based Artificial Metalloenzymes” section), and proteins (“Protein-Based Artificial Enzymes” section). Both dative and supramolecular anchoring strategies are reviewed.


Notes: Book chapter