8 publications

8 publications

A Site-Selective Dual Anchoring Strategy for Artificial Metalloprotein Design

Lu, Y.

J. Am. Chem. Soc., 2004, 10.1021/ja046908x

Introducing nonnative metal ions or metal-containing prosthetic groups into a protein can dramatically expand the repertoire of its functionalities and thus its range of applications. Particularly challenging is the control of substrate-binding and thus reaction selectivity such as enantioselectivity. To meet this challenge, both non-covalent and single-point attachments of metal complexes have been demonstrated previously. Since the protein template did not evolve to bind artificial metal complexes tightly in a single conformation, efforts to restrict conformational freedom by modifying the metal complexes and/or the protein are required to achieve high enantioselectivity using the above two strategies. Here we report a novel site-selective dual anchoring (two-point covalent attachment) strategy to introduce an achiral manganese salen complex (Mn(salen)), into apo sperm whale myoglobin (Mb) with bioconjugation yield close to 100%. The enantioselective excess increases from 0.3% for non-covalent, to 12.3% for single point, and to 51.3% for dual anchoring attachments. The dual anchoring method has the advantage of restricting the conformational freedom of the metal complex in the protein and can be generally applied to protein incorporation of other metal complexes with minimal structural modification to either the metal complex or the protein.


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: 3.9
ee: 51
PDB: 1MBO
Notes: Sperm whale myoglobin

Coordinated Design of Cofactor and Active Site Structures in Development of New Protein Catalysts

Watanabe, Y.

J. Am. Chem. Soc., 2005, 10.1021/ja045995q


Metal: Mn
Ligand type: Salophen
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 1V9Q
Notes: ---

Metal: Cr
Ligand type: Salophen
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: 1J3F
Notes: ---

Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Metal: Cr
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Reconstitution
Optimization: Chemical & genetic
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Incorporation of Biotinylated Manganese-Salen Complexes into Streptavidin: New Artificial Metalloenzymes for Enantioselective Sulfoxidation

Ward, T. R.

J. Organomet. Chem., 2009, 10.1016/j.jorganchem.2008.11.023


Metal: Mn
Ligand type: Oxide; Salen
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 28
ee: 13
PDB: ---
Notes: ---

Noncovalent Modulation of pH-Dependent Reactivity of a Mn–Salen Cofactor in Myoglobin with Hydrogen Peroxide

Lu, Y.

Chem. - Eur. J., 2009, 10.1002/chem.200802449


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 4.1
ee: 50
PDB: ---
Notes: Sperm whale myoglobin

Protein Scaffold of a Designed Metalloenzyme Enhances the Chemoselectivity in Sulfoxidation of Thioanisole

Lu, Y.

Chem. Commun., 2008, 10.1039/b718915j


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 5.2
ee: 60
PDB: ---
Notes: Sperm whale myoglobin

The Important Role of Covalent Anchor Positions in Tuning Catalytic Properties of a Rationally Designed MnSalen-Containing Metalloenzyme

Lu, Y.; Zhang, J.-L.

ACS Catal., 2011, 10.1021/cs200258e


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: ---
ee: 83
PDB: ---
Notes: Reaction rate: 2.3 min-1

The Protein Environment Drives Selectivity for Sulfide Oxidation by an Artificial Metalloenzyme

Cavazza, C.; Ménage, S.

ChemBioChem, 2009, 10.1002/cbic.200800595


Metal: Mn
Ligand type: Salen
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 97
ee: ---
PDB: ---
Notes: ---

Towards the Directed Evolution of Hybrid Catalysts

Reetz, M. T.

Chimia, 2002, 10.2533/000942902777679920


Metal: Mn
Ligand type: Salen
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Epoxidation
Max TON: ---
ee: < 10
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Dipyridin-2-ylmethane
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: ---
Reaction: Hydrogenation
Max TON: ---
ee: < 10
PDB: ---
Notes: ---