2 publications

2 publications

Artificial Enzymes Based on Supramolecular Scaffolds

Review

Liu, J.

Chem. Soc. Rev. 2012, 41, 7890, 10.1039/c2cs35207a

Enzymes are nanometer-sized molecules with three-dimensional structures created by the folding and self-assembly of polymeric chain-like components through supramolecular interactions. They are capable of performing catalytic functions usually accompanied by a variety of conformational states. The conformational diversities and complexities of natural enzymes exerted in catalysis seriously restrict the detailed understanding of enzymatic mechanisms in molecular terms. A supramolecular viewpoint is undoubtedly helpful in understanding the principle of enzyme catalysis. The emergence of supramolecular artificial enzymes therefore provides an alternative way to approach the structural complexity and thus to unravel the mystery of enzyme catalysis. This critical review covers the recent development of artificial enzymes designed based on supramolecular scaffolds ranging from the synthetic macrocycles to self-assembled nanometer-sized objects. Such findings are anticipated to facilitate the design of supramolecular artificial enzymes as well as their potential uses in important fields, such as manufacturing and food industries, environmental biosensors, pharmaceutics and so on.


Notes: ---

Design of Artificial Enzymes by Supramolecular Strategies

Review

Liu, J.

Curr. Opin. Struct. Biol. 2018, 51, 19-27, 10.1016/j.sbi.2018.02.003

Enzymes are biomacromolecules with three-dimensional structures composed of peptide polymers via supramolecular interactions. Owing to the incredible catalytic efficiency and unique substrate selectivity, enzymes arouse considerable attention. To rival natural enzymes, various artificial enzymes have been developed over the last decades. Since supramolecular interactions play important roles in both substrate recognition and the process of enzymatic catalysis, designing artificial enzymes using supramolecular strategies is undoubtedly significant. Here we discuss the recent advances in constructing artificial enzymes using supramolecular platforms.


Notes: ---