3 publications

3 publications

Diruthenium Diacetate-Catalyzed Aerobic Oxidation of Hydroxylamines and Improved Chemoselectivity by Immobilization to Lysozyme

Cardona, F.; Goti, A.; Messori, L.

ChemCatChem 2017, 9, 4225-4230, 10.1002/cctc.201701083

A new green method for the preparation of nitrones through the aerobic oxidation of the corresponding N,N‐disubstituted hydroxylamines has been developed upon exploring the catalytic activity of a diruthenium catalyst, that is, [Ru2(OAc)4Cl]), in aqueous or alcoholic solution under mild reaction conditions (0.1 to 1 mol % catalyst, air, 50 °C) and reasonable reaction times. Notably, the catalytic activity of the dimetallic centre is retained after its binding to the small protein lysozyme. Interestingly, this new artificial metalloenzyme conferred complete chemoselectivity to the oxidation of cyclic hydroxylamines, in contrast to the diruthenium catalyst.


Metal: Ru
Ligand type: Amino acid; OAc
Host protein: Lysozyme
Anchoring strategy: Dative
Optimization: Chemical
Max TON: 1000
ee: ---
PDB: ---
Notes: ---

Synthesis of a Sequence-Specific DNA-Cleaving Peptide

Dervan, P.B.

Science 1987, 238, 1129-1132, 10.1126/science.3120311

A synthetic 52-residue peptide based on the sequence-specific DNA-binding domain of Hin recombinase (139-190) has been equipped with ethylenediaminetetraacetic acid (EDTA) at the amino terminus. In the presence of Fe(II), this synthetic EDTA-peptide cleaves DNA at Hin recombination sites. The cleavage data reveal that the amino terminus of Hin(139-190) is bound in the minor groove of DNA near the symmetry axis of Hin recombination sites. This work demonstrates the construction of a hybrid peptide combining two functional domains: sequence-specific DNA binding and DNA cleavage.


Metal: Fe
Ligand type: EDTA
Anchoring strategy: Covalent
Optimization: ---
Reaction: DNA cleavage
Max TON: <1
ee: ---
PDB: ---
Notes: Engineered sequence specificity

Thermostable Peroxidase-Activity with a Recombinant Antibody L-Chain-Porphyrin Fe(III) Complex

Imanaka, T.

FEBS Lett. 1995, 375, 273-276, 10.1016/0014-5793(95)01224-3

In order to engineer a new type of catalytic antibody, we attempt to use a monoclonal antibody L chain as a host protein for a porphyrin. TCPP (meso‐tetrakis(4‐carboxyphenyl)porphyine) was chemically synthesized and Balb/c mice were immunized using TCPP as a hapten. Two hybridoma cells (03‐1, 13‐1), that produce monoclonal antibody against TCPP, were obtained. Genes for both H and L chains of monoclonal antibodies were cloned, sequenced and overexpressed using E. coli as a host. ELISA and fluorescence quenching method show that the independent antibody L chains from both Mab03‐1 and Mab13‐1 have specific interaction with TCPP. Furthermore, the recombinant antibody L chain from Mab13‐1 exhibits much higher peroxidase activity than TCPP Fe(III) alone. The enzyme activity was detectable with pyrogallol and ABTS (2,2‐azinobis‐3‐ethylbenzthiazolin‐6‐sulfonic acid) but not with catechol. This new catalytic antibody was extremely thermostable. Optimum temperature of the peroxidase reaction by the complex of 13‐1L chain and TCPP Fe(III) was 90°C, while that the TCPP Fe(III) alone was 60°C.


Metal: Fe
Ligand type: Porphyrin
Anchoring strategy: Antibody
Optimization: ---
Reaction: Peroxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---