5 publications
-
Biosynthesis of a Site-Specific DNA Cleaving Protein
-
J. Am. Chem. Soc. 2008, 130, 13194-13195, 10.1021/ja804653f
An E. coli catabolite activator protein (CAP) has been converted into a sequence-specific DNA cleaving protein by genetically introducing (2,2′-bipyridin-5-yl)alanine (Bpy-Ala) into the protein. The mutant CAP (CAP-K26Bpy-Ala) showed comparable binding affinity to CAP-WT for the consensus operator sequence. In the presence of Cu(II) and 3-mercaptopropionic acid, CAP-K26Bpy-Ala cleaves double-stranded DNA with high sequence specificity. This method should provide a useful tool for mapping the molecular details of protein−nucleic acid interactions.
Metal: CuLigand type: BipyridineHost protein: Catabolite activator protein (CAP)Anchoring strategy: ---Optimization: Chemical & geneticNotes: Catabolite activator protein from E. coli
Metal: FeLigand type: BipyridineHost protein: Catabolite activator protein (CAP)Anchoring strategy: ---Optimization: Chemical & geneticNotes: Catabolite activator protein from E. coli
-
Generation of a Hybrid Sequence-Specific Single Stranded Deoxyribonuclease
-
Science 1987, 238, 1401-1403, 10.1126/science.3685986
The relatively nonspecific single-stranded deoxyribonuclease, staphylococcal nuclease, was selectively fused to an oligonucleotide binding site of defined sequence to generate a hybrid enzyme. A cysteine was substituted for Lys116 in the enzyme by oligonucleotide-directed mutagenesis and coupled to an oligonucleotide that contained a 3'-thiol. The resulting hybrid enzyme cleaved single-stranded DNA at sites adjacent to the oligonucleotide binding site.
Metal: CaLigand type: UndefinedHost protein: Staphylococcal nucleaseAnchoring strategy: ---Optimization: ---Notes: Engineered sequence specificity
-
Peroxidase Activity of an Antibody-Heme Complex
-
J. Am. Chem. Soc. 1990, 112, 9414-9415, 10.1021/ja00181a065
The specificity and diversity of the immune system have recently been exploited in the generation of antibodies that catalyze a wide variety of chemical reactions.1·2 Several general strategies for the design of catalytic antibodies have emerged, including the use of antibody binding energy to enhance the chemical reactivity of a cofactor or to position a cofactor and a substrate in close proximity.3,4 An intriguing target for antibody-cofactor catalysis is the oxidative reactions characteristic of heme proteins. Here we report that antibodies specific for A-methylmesoporphyrin IX bind iron(III) mesoporphyrin IX and that the resulting complex catalyzes the oxidation of several substrates. These studies are a first step toward the development of selective antibody-heme monooxygenase catalysts.
Metal: FeLigand type: PorphyrinHost protein: Antibody7G12-A10-G1-A12Anchoring strategy: SupramolecularOptimization: ---Notes: ---
-
Precise Design of Artificial Cofactors for Enhancing Peroxidase Activity of Myoglobin: Myoglobin Mutant H64D Reconstituted with a “Single-Winged Cofactor” is Equivalent to Native Horseradish Peroxidase in Oxidation Activity
-
Chem. - Asian J. 2011, 6, 2491-2499, 10.1002/asia.201100107
H64D myoglobin mutant was reconstituted with two different types of synthetic hemes that have aromatic rings and a carboxylate‐based cluster attached to the terminus of one or both of the heme‐propionate moieties, thereby forming a “single‐winged cofactor” and “double‐winged cofactor,” respectively. The reconstituted mutant myoglobins have smaller Km values with respect to 2‐methoxyphenol oxidation activity relative to the parent mutant with native heme. This suggests that the attached moiety functions as a substrate‐binding domain. However, the kcat value of the mutant myoglobin with the double‐winged cofactor is much lower than that of the mutant with the native heme. In contrast, the mutant reconstituted with the single‐winged cofactor has a larger kcat value, thereby resulting in overall catalytic activity that is essentially equivalent to that of the native horseradish peroxidase. Enhanced peroxygenase activity was also observed for the mutant myoglobin with the single‐winged cofactor, thus indicating that introduction of an artificial substrate‐binding domain at only one of the heme propionates in the H64D mutant is the optimal engineering strategy for improving the peroxidase activity of myoglobin.
Metal: FeLigand type: Single winged protoporphyrin IXHost protein: Myoglobin (Mb)Anchoring strategy: ReconstitutionOptimization: Chemical & geneticNotes: ---
-
Recent Developments on Creation of Artificial Metalloenzymes
Review -
Tetrahedron Lett. 2019, 60, 151226, 10.1016/j.tetlet.2019.151226
Organic synthesis using biocatalysts has been developed over many years and is still a prominent area of research. In this context, various hybrid biocatalysts composed of a synthetic metal complex catalyst and a protein scaffold (i.e. artificial metalloenzymes) have been constructed. One of the most recent research areas in biocatalysts-mediated synthesis is CC bond/cleavage, the most important type of reaction in organic chemistry. Some of the artificial enzymes were applied to in-cell reactions as well as in vitro systems. The effects of the structural fluctuation in biomacromolecules on their functions have also been realized. This review article includes recent research examples of artificial metalloenzymes used to CC bond formation/cleavage. As a perspective, we also focus on how we apply protein dynamics factor for the creation of new generation artificial metalloenzymes.
Notes: ---