Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

27 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

Albumin-Conjugated Corrole Metal Complexes: Extremely Simple Yet Very Efficient Biomimetic Oxidation Systems

An extremely simple biomimetic oxidation system, consisting of mixing metal complexes of amphiphilic corroles with serum albumins, utilizes hydrogen peroxide for asymmetric sulfoxidation in up to 74% ee. The albumin-conjugated manganese corroles also display catalase-like activity, and mechanistic evidence points toward oxidant-coordinated manganese(III) as the prime reaction intermediate.

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

8

ee:

74

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

42

ee:

52

PDB:

---

Notes:

---

An Artificial Enzyme Made by Covalent Grafting of an FeII Complex into β-Lactoglobulin: Molecular Chemistry, Oxidation Catalysis, and Reaction-Intermediate Monitoring in a Protein

An artificial metalloenzyme based on the covalent grafting of a nonheme FeII polyazadentate complex into bovine β‐lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the FeII catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin‐state conversion of the initial high spin (S=2) FeII complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center’s first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2O2 reveals the generation of a high spin (S=5/2) FeIII(η2‐O2) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate.

Metal:

Fe

Ligand type:

Poly-pyridine

Host protein:

ß-lactoglobulin

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

5.6

ee:

20

PDB:

---

Notes:

---

An Artificial Oxygenase Built from Scratch: Substrate Binding Site Identified Using a Docking Approach

The substrate for an artificial iron monooxygenase was selected by using docking calculations. The high catalytic efficiency of the reported enzyme for sulfide oxidation was directly correlated to the predicted substrate binding mode in the protein cavity, thus illustrating the synergetic effect of the substrate binding site, protein scaffold, and catalytic site.

Metal:

Fe

Ligand type:

BPMCN; BPMEN

Host protein:

NikA

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

199

ee:

≤5

PDB:

---

Notes:

---

Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes

Metal:

Ru

Ligand type:

Porphyrin

Host protein:

Antibody SN37.4

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

750

ee:

43

PDB:

---

Notes:

---

Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin

Metal:

V

Ligand type:

Water

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Sulfoxidation

Max TON:

27

ee:

93

PDB:

---

Notes:

---

A Site-Selective Dual Anchoring Strategy for Artificial Metalloprotein Design

Introducing nonnative metal ions or metal-containing prosthetic groups into a protein can dramatically expand the repertoire of its functionalities and thus its range of applications. Particularly challenging is the control of substrate-binding and thus reaction selectivity such as enantioselectivity. To meet this challenge, both non-covalent and single-point attachments of metal complexes have been demonstrated previously. Since the protein template did not evolve to bind artificial metal complexes tightly in a single conformation, efforts to restrict conformational freedom by modifying the metal complexes and/or the protein are required to achieve high enantioselectivity using the above two strategies. Here we report a novel site-selective dual anchoring (two-point covalent attachment) strategy to introduce an achiral manganese salen complex (Mn(salen)), into apo sperm whale myoglobin (Mb) with bioconjugation yield close to 100%. The enantioselective excess increases from 0.3% for non-covalent, to 12.3% for single point, and to 51.3% for dual anchoring attachments. The dual anchoring method has the advantage of restricting the conformational freedom of the metal complex in the protein and can be generally applied to protein incorporation of other metal complexes with minimal structural modification to either the metal complex or the protein.

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Covalent

Optimization:

Genetic

Reaction:

Sulfoxidation

Max TON:

3.9

ee:

51

PDB:

1MBO

Notes:

Sperm whale myoglobin

Asymmetric Catalytic Sulfoxidation by a Novel VIV8 Cluster Catalyst in the Presence of Serum Albumin: A Simple and Green Oxidation System

Metal:

V

Anchoring strategy:

Undefined

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

140

ee:

77

PDB:

---

Notes:

Screening with different serum albumins.

Bovine Serum Albumin-Cobalt(II) Schiff Base Complex Hybrid: An Efficient Artificial Metalloenzyme for Enantioselective Sulfoxidation using Hydrogen Peroxide

Metal:

Co

Ligand type:

Amine; Phenolate

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

98

ee:

87

PDB:

---

Notes:

---

Catalysis Without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation

Metal:

Fe

Ligand type:

BPHMEN

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

1367

ee:

---

PDB:

---

Notes:

---

Covalent Versus Non-covalent (Biocatalytic) Approaches for Enantioselective Sulfoxidation Catalyzed by Corrole Metal Complexes

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

45

ee:

70

PDB:

---

Notes:

---

Enantioselective Sulfoxidation Mediated by Vanadium-Incorporated Phytase: A Hydrolase Acting as a Peroxidase

Metal:

V

Ligand type:

Undefined

Host protein:

Phytase

Anchoring strategy:

Undefined

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

~194

ee:

66

PDB:

---

Notes:

---

Metal:

V

Ligand type:

Oxide

Host protein:

Phytase

Anchoring strategy:

Undefined

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

550

ee:

66

PDB:

---

Notes:

---

Incorporation of Biotinylated Manganese-Salen Complexes into Streptavidin: New Artificial Metalloenzymes for Enantioselective Sulfoxidation

Metal:

Mn

Ligand type:

Oxide; Salen

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

28

ee:

13

PDB:

---

Notes:

---

Metal Substitution in Thermolysin: Catalytic Properties of Tungstate Thermolysin in Sulfoxidation with H2O2

Metal:

W

Ligand type:

Amino acid

Host protein:

Thermolysin

Anchoring strategy:

Metal substitution

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Neocarzinostatin-Based Hybrid Biocatalysts for Oxidation Reactions

Metal:

Fe

Ligand type:

Porphyrin

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

6

ee:

13

PDB:

---

Notes:

---

New Activities of a Catalytic Antibody with a Peroxidase Activity: Formation of Fe(II)–RNO Complexes and Stereoselective Oxidation of Sulfides

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 3A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

82

ee:

45

PDB:

---

Notes:

---

Noncovalent Modulation of pH-Dependent Reactivity of a Mn–Salen Cofactor in Myoglobin with Hydrogen Peroxide

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

4.1

ee:

50

PDB:

---

Notes:

Sperm whale myoglobin

Oxidation Catalysis via Visible-Light Water Activation of a [Ru(bpy)3]2+ Chromophore BSA–Metallocorrole Couple

Metal:

Mn

Ligand type:

Corrole

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

21

ee:

16

PDB:

---

Notes:

Water as oxygen source

Oxidation of Organic Molecules in Homogeneous Aqueous Solution Catalyzed by Hybrid Biocatalysts (Based on the Trojan Horse Strategy)

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 7A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

9

ee:

10

PDB:

---

Notes:

---

Metal:

Mn

Ligand type:

Porphyrin

Host protein:

Antibody 7A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Epoxidation

Max TON:

105

ee:

---

PDB:

---

Notes:

Imidazole as co-catalyst

Protein Scaffold of a Designed Metalloenzyme Enhances the Chemoselectivity in Sulfoxidation of Thioanisole

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Sulfoxidation

Max TON:

5.2

ee:

60

PDB:

---

Notes:

Sperm whale myoglobin

Selective Oxidation of Aromatic Sulfide Catalyzed by an Artificial Metalloenzyme: New Activity of Hemozymes

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Xylanase A (XynA)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

145

ee:

40

PDB:

---

Notes:

---

Stereoselective Sulfoxidation Catalyzed by Achiral Schiff Base Complexes in the Presence of Serum Albumin in Aqueous Media

Metal:

Co

Anchoring strategy:

Undefined

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

~60

ee:

59

PDB:

---

Notes:

---

Synthesis of a New Estradiol–Iron Metalloporphyrin Conjugate Used to Build up a New Hybrid Biocatalyst for Selective Oxidations by the ‘Trojan Horse’ Strategy

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Antibody 7A3

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Sulfoxidation

Max TON:

12

ee:

8

PDB:

---

Notes:

---

The Important Role of Covalent Anchor Positions in Tuning Catalytic Properties of a Rationally Designed MnSalen-Containing Metalloenzyme

Metal:

Mn

Ligand type:

Salen

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Covalent

Optimization:

Genetic

Reaction:

Sulfoxidation

Max TON:

---

ee:

83

PDB:

---

Notes:

Reaction rate: 2.3 min-1

The Protein Environment Drives Selectivity for Sulfide Oxidation by an Artificial Metalloenzyme

Metal:

Mn

Ligand type:

Salen

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

97

ee:

---

PDB:

---

Notes:

---

The Rational Design of Semisynthetic Peroxidases

Metal:

V

Ligand type:

Oxide

Host protein:

Phytase

Anchoring strategy:

Undefined

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

---

ee:

66

PDB:

---

Notes:

Reaction performed in 30% organic co-solvent.

Vanadium-Catalysed Enantioselective Sulfoxidations: Rational Design of Biocatalytic and Biomimetic Systems

Metal:

V

Ligand type:

Oxide

Host protein:

Phytase

Anchoring strategy:

Undefined

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

---

ee:

68

PDB:

---

Notes:

---

Various Strategies for Obtaining Artificial Hemoproteins: From "Hemoabzymes" to "Hemozymes"

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Xylanase A (XynA)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

---

ee:

36

PDB:

---

Notes:

---