27 publications

27 publications

Albumin-Conjugated Corrole Metal Complexes: Extremely Simple Yet Very Efficient Biomimetic Oxidation Systems

Gross, Z.

J. Am. Chem. Soc., 2005, 10.1021/ja045372c

An extremely simple biomimetic oxidation system, consisting of mixing metal complexes of amphiphilic corroles with serum albumins, utilizes hydrogen peroxide for asymmetric sulfoxidation in up to 74% ee. The albumin-conjugated manganese corroles also display catalase-like activity, and mechanistic evidence points toward oxidant-coordinated manganese(III) as the prime reaction intermediate.


Metal: Mn
Ligand type: Corrole
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 8
ee: 74
PDB: ---
Notes: ---

Metal: Mn
Ligand type: Corrole
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 42
ee: 52
PDB: ---
Notes: ---

An Artificial Enzyme Made by Covalent Grafting of an FeII Complex into β-Lactoglobulin: Molecular Chemistry, Oxidation Catalysis, and Reaction-Intermediate Monitoring in a Protein

Banse, F.; Mahy, J.-P.

Chem. - Eur. J., 2015, 10.1002/chem.201501755

An artificial metalloenzyme based on the covalent grafting of a nonheme FeII polyazadentate complex into bovine β‐lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the FeII catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin‐state conversion of the initial high spin (S=2) FeII complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center’s first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2O2 reveals the generation of a high spin (S=5/2) FeIII(η2‐O2) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate.


Metal: Fe
Ligand type: Poly-pyridine
Host protein: ß-lactoglobulin
Anchoring strategy: Covalent
Optimization: ---
Reaction: Sulfoxidation
Max TON: 5.6
ee: 20
PDB: ---
Notes: ---

An Artificial Oxygenase Built from Scratch: Substrate Binding Site Identified Using a Docking Approach

Cavazza, C.; Ménage, S.

Angew. Chem., Int. Ed., 2014, 10.1002/anie.201209021

The substrate for an artificial iron monooxygenase was selected by using docking calculations. The high catalytic efficiency of the reported enzyme for sulfide oxidation was directly correlated to the predicted substrate binding mode in the protein cavity, thus illustrating the synergetic effect of the substrate binding site, protein scaffold, and catalytic site.


Metal: Fe
Ligand type: BPMCN; BPMEN
Host protein: NikA
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 199
ee: ≤5
PDB: ---
Notes: ---

Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes

Keinan, E.

J. Am. Chem. Soc., 1999, 10.1021/ja990314q


Metal: Ru
Ligand type: Porphyrin
Host protein: Antibody SN37.4
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 750
ee: 43
PDB: ---
Notes: ---

Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin

Ward, T. R.

J. Am. Chem. Soc., 2008, 10.1021/ja8017219


Metal: V
Ligand type: Water
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: 27
ee: 93
PDB: ---
Notes: ---

A Site-Selective Dual Anchoring Strategy for Artificial Metalloprotein Design

Lu, Y.

J. Am. Chem. Soc., 2004, 10.1021/ja046908x

Introducing nonnative metal ions or metal-containing prosthetic groups into a protein can dramatically expand the repertoire of its functionalities and thus its range of applications. Particularly challenging is the control of substrate-binding and thus reaction selectivity such as enantioselectivity. To meet this challenge, both non-covalent and single-point attachments of metal complexes have been demonstrated previously. Since the protein template did not evolve to bind artificial metal complexes tightly in a single conformation, efforts to restrict conformational freedom by modifying the metal complexes and/or the protein are required to achieve high enantioselectivity using the above two strategies. Here we report a novel site-selective dual anchoring (two-point covalent attachment) strategy to introduce an achiral manganese salen complex (Mn(salen)), into apo sperm whale myoglobin (Mb) with bioconjugation yield close to 100%. The enantioselective excess increases from 0.3% for non-covalent, to 12.3% for single point, and to 51.3% for dual anchoring attachments. The dual anchoring method has the advantage of restricting the conformational freedom of the metal complex in the protein and can be generally applied to protein incorporation of other metal complexes with minimal structural modification to either the metal complex or the protein.


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: 3.9
ee: 51
PDB: 1MBO
Notes: Sperm whale myoglobin

Asymmetric Catalytic Sulfoxidation by a Novel VIV8 Cluster Catalyst in the Presence of Serum Albumin: A Simple and Green Oxidation System

Bian, H.-D.; Huang, F.-P.

RSC Adv., 2016, 10.1039/C6RA08153C


Metal: V
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 140
ee: 77
PDB: ---
Notes: Screening with different serum albumins.

Bovine Serum Albumin-Cobalt(II) Schiff Base Complex Hybrid: An Efficient Artificial Metalloenzyme for Enantioselective Sulfoxidation using Hydrogen Peroxide

Bian, H.-D.; Liang, H.

Dalton Trans., 2016, 10.1039/C5DT04507J


Metal: Co
Ligand type: Amine; Phenolate
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 98
ee: 87
PDB: ---
Notes: ---

Catalysis Without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation

Ménage, S.

J. Mol. Catal. A: Chem., 2016, 10.1016/j.molcata.2016.02.015


Metal: Fe
Ligand type: BPHMEN
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 1367
ee: ---
PDB: ---
Notes: ---

Covalent Versus Non-covalent (Biocatalytic) Approaches for Enantioselective Sulfoxidation Catalyzed by Corrole Metal Complexes

Gross, Z.

Cat. Sci. Technol., 2011, 10.1039/c1cy00046b


Metal: Mn
Ligand type: Corrole
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 45
ee: 70
PDB: ---
Notes: ---

Enantioselective Sulfoxidation Mediated by Vanadium-Incorporated Phytase: A Hydrolase Acting as a Peroxidase

Sheldon, R. A.

Chem. Commun., 1998, 10.1039/a804702b


Metal: V
Ligand type: Undefined
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: ~194
ee: 66
PDB: ---
Notes: ---

Metal: V
Ligand type: Oxide
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: 550
ee: 66
PDB: ---
Notes: ---

Incorporation of Biotinylated Manganese-Salen Complexes into Streptavidin: New Artificial Metalloenzymes for Enantioselective Sulfoxidation

Ward, T. R.

J. Organomet. Chem., 2009, 10.1016/j.jorganchem.2008.11.023


Metal: Mn
Ligand type: Oxide; Salen
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 28
ee: 13
PDB: ---
Notes: ---

Metal Substitution in Thermolysin: Catalytic Properties of Tungstate Thermolysin in Sulfoxidation with H2O2

Sheldon, R. A.

Can. J. Chem., 2002, 10.1139/v02-082


Metal: W
Ligand type: Amino acid
Host protein: Thermolysin
Anchoring strategy: Metal substitution
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Neocarzinostatin-Based Hybrid Biocatalysts for Oxidation Reactions

Mahy, J.-P.; Ricoux, R.

Dalton Trans., 2014, 10.1039/c4dt00151f


Metal: Fe
Ligand type: Porphyrin
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 6
ee: 13
PDB: ---
Notes: ---

New Activities of a Catalytic Antibody with a Peroxidase Activity: Formation of Fe(II)–RNO Complexes and Stereoselective Oxidation of Sulfides

Mahy, J.-P.

Eur. J. Biochem., 2004, 10.1111/j.1432-1033.2004.04032.x


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 3A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 82
ee: 45
PDB: ---
Notes: ---

Noncovalent Modulation of pH-Dependent Reactivity of a Mn–Salen Cofactor in Myoglobin with Hydrogen Peroxide

Lu, Y.

Chem. - Eur. J., 2009, 10.1002/chem.200802449


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 4.1
ee: 50
PDB: ---
Notes: Sperm whale myoglobin

Oxidation Catalysis via Visible-Light Water Activation of a [Ru(bpy)3]2+ Chromophore BSA–Metallocorrole Couple

Gross, Z.; Mahy, J.-P.

Dalton Trans., 2016, 10.1039/c5dt04158a


Metal: Mn
Ligand type: Corrole
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 21
ee: 16
PDB: ---
Notes: Water as oxygen source

Oxidation of Organic Molecules in Homogeneous Aqueous Solution Catalyzed by Hybrid Biocatalysts (Based on the Trojan Horse Strategy)

Mahy, J.-P.

Tetrahedron: Asymmetry, 2010, 10.1016/j.tetasy.2010.03.050


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 7A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 9
ee: 10
PDB: ---
Notes: ---

Metal: Mn
Ligand type: Porphyrin
Host protein: Antibody 7A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Epoxidation
Max TON: 105
ee: ---
PDB: ---
Notes: Imidazole as co-catalyst

Protein Scaffold of a Designed Metalloenzyme Enhances the Chemoselectivity in Sulfoxidation of Thioanisole

Lu, Y.

Chem. Commun., 2008, 10.1039/b718915j


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 5.2
ee: 60
PDB: ---
Notes: Sperm whale myoglobin

Selective Oxidation of Aromatic Sulfide Catalyzed by an Artificial Metalloenzyme: New Activity of Hemozymes

Mahy, J.-P.

Org. Biomol. Chem., 2009, 10.1039/b907534h


Metal: Fe
Ligand type: Porphyrin
Host protein: Xylanase A (XynA)
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 145
ee: 40
PDB: ---
Notes: ---

Stereoselective Sulfoxidation Catalyzed by Achiral Schiff Base Complexes in the Presence of Serum Albumin in Aqueous Media

Bian, H.-D.; Huang, F.-P.

Tetrahedron: Asymmetry, 2017, 10.1016/j.tetasy.2017.10.021


Metal: Co
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: ~60
ee: 59
PDB: ---
Notes: ---

Synthesis of a New Estradiol–Iron Metalloporphyrin Conjugate Used to Build up a New Hybrid Biocatalyst for Selective Oxidations by the ‘Trojan Horse’ Strategy

Mahy, J.-P.

Tetrahedron Lett., 2008, 10.1016/j.tetlet.2008.01.022


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 7A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 12
ee: 8
PDB: ---
Notes: ---

The Important Role of Covalent Anchor Positions in Tuning Catalytic Properties of a Rationally Designed MnSalen-Containing Metalloenzyme

Lu, Y.; Zhang, J.-L.

ACS Catal., 2011, 10.1021/cs200258e


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: ---
ee: 83
PDB: ---
Notes: Reaction rate: 2.3 min-1

The Protein Environment Drives Selectivity for Sulfide Oxidation by an Artificial Metalloenzyme

Cavazza, C.; Ménage, S.

ChemBioChem, 2009, 10.1002/cbic.200800595


Metal: Mn
Ligand type: Salen
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 97
ee: ---
PDB: ---
Notes: ---

The Rational Design of Semisynthetic Peroxidases

Sheldon, R. A.

Biotechnol. Bioeng., 2000, 10.1002/(SICI)1097-0290(20000105)67:1<87::AID-BIT10>3.0.CO;2-8


Metal: V
Ligand type: Oxide
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: ---
ee: 66
PDB: ---
Notes: Reaction performed in 30% organic co-solvent.

Vanadium-Catalysed Enantioselective Sulfoxidations: Rational Design of Biocatalytic and Biomimetic Systems

Sheldon, R. A.

Top. Catal., 2000, 10.1023/A:1009094619249


Metal: V
Ligand type: Oxide
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: ---
ee: 68
PDB: ---
Notes: ---

Various Strategies for Obtaining Artificial Hemoproteins: From "Hemoabzymes" to "Hemozymes"

Mahy, J.-P.

Biochimie, 2009, 10.1016/j.biochi.2009.03.002


Metal: Fe
Ligand type: Porphyrin
Host protein: Xylanase A (XynA)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: ---
ee: 36
PDB: ---
Notes: ---