27 publications

27 publications

Albumin-Conjugated Corrole Metal Complexes: Extremely Simple Yet Very Efficient Biomimetic Oxidation Systems

Gross, Z.

J. Am. Chem. Soc. 2005, 127, 2883-2887, 10.1021/ja045372c

An extremely simple biomimetic oxidation system, consisting of mixing metal complexes of amphiphilic corroles with serum albumins, utilizes hydrogen peroxide for asymmetric sulfoxidation in up to 74% ee. The albumin-conjugated manganese corroles also display catalase-like activity, and mechanistic evidence points toward oxidant-coordinated manganese(III) as the prime reaction intermediate.


Metal: Mn
Ligand type: Corrole
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 8
ee: 74
PDB: ---
Notes: ---

Metal: Mn
Ligand type: Corrole
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 42
ee: 52
PDB: ---
Notes: ---

An Artificial Enzyme Made by Covalent Grafting of an FeII Complex into β-Lactoglobulin: Molecular Chemistry, Oxidation Catalysis, and Reaction-Intermediate Monitoring in a Protein

Banse, F.; Mahy, J.-P.

Chem. - Eur. J. 2015, 21, 12188-12193, 10.1002/chem.201501755

An artificial metalloenzyme based on the covalent grafting of a nonheme FeII polyazadentate complex into bovine β‐lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the FeII catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin‐state conversion of the initial high spin (S=2) FeII complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center’s first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2O2 reveals the generation of a high spin (S=5/2) FeIII(η2‐O2) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate.


Metal: Fe
Ligand type: Poly-pyridine
Host protein: ß-lactoglobulin
Anchoring strategy: Covalent
Optimization: ---
Reaction: Sulfoxidation
Max TON: 5.6
ee: 20
PDB: ---
Notes: ---

An Artificial Oxygenase Built from Scratch: Substrate Binding Site Identified Using a Docking Approach

Cavazza, C.; Ménage, S.

Angew. Chem. Int. Ed. 2013, 52, 3922-3925, 10.1002/anie.201209021

The substrate for an artificial iron monooxygenase was selected by using docking calculations. The high catalytic efficiency of the reported enzyme for sulfide oxidation was directly correlated to the predicted substrate binding mode in the protein cavity, thus illustrating the synergetic effect of the substrate binding site, protein scaffold, and catalytic site.


Metal: Fe
Ligand type: BPMCN; BPMEN
Host protein: NikA
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 199
ee: ≤5
PDB: ---
Notes: ---

Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes

Keinan, E.

J. Am. Chem. Soc. 1999, 121, 8978-8982, 10.1021/ja990314q

An antibody−metalloporphyrin assembly that catalyzes the enantioselective oxidation of aromatic sulfides to sulfoxides is presented. Antibody SN37.4 was elicited against a water-soluble tin(IV) porphyrin containing an axial α-naphthoxy ligand. The catalytic assembly comprising antibody SN37.4 and a ruthenium(II) porphyrin cofactor exhibited typical enzyme characteristics, such as predetermined oxidant and substrate selectivity, enantioselective delivery of oxygen to the substrate, and Michaelis−Menten saturation kinetics. This assembly, which promotes a complex, multistep catalytic event, represents a close model of natural heme-dependent oxidation enzymes.


Metal: Ru
Ligand type: Porphyrin
Host protein: Antibody SN37.4
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 750
ee: 43
PDB: ---
Notes: ---

Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin

Ward, T.R.

J. Am. Chem. Soc. 2008, 130, 8085-8088, 10.1021/ja8017219

Nature’s catalysts are specifically evolved to carry out efficient and selective reactions. Recent developments in biotechnology have allowed the rapid optimization of existing enzymes for enantioselective processes. However, the ex nihilo creation of catalytic activity from a noncatalytic protein scaffold remains very challenging. Herein, we describe the creation of an artificial enzyme upon incorporation of a vanadyl ion into the biotin-binding pocket of streptavidin, a protein devoid of catalytic activity. The resulting artificial metalloenzyme catalyzes the enantioselective oxidation of prochiral sulfides with good enantioselectivities both for dialkyl and alkyl-aryl substrates (up to 93% enantiomeric excess). Electron paragmagnetic resonance spectroscopy, chemical modification, and mutagenesis studies suggest that the vanadyl ion is located within the biotin-binding pocket and interacts only via second coordination sphere contacts with streptavidin.


Metal: V
Ligand type: Water
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: 27
ee: 93
PDB: ---
Notes: ---

A Site-Selective Dual Anchoring Strategy for Artificial Metalloprotein Design

Lu, Y.

J. Am. Chem. Soc. 2004, 126, 10812-10813, 10.1021/ja046908x

Introducing nonnative metal ions or metal-containing prosthetic groups into a protein can dramatically expand the repertoire of its functionalities and thus its range of applications. Particularly challenging is the control of substrate-binding and thus reaction selectivity such as enantioselectivity. To meet this challenge, both non-covalent and single-point attachments of metal complexes have been demonstrated previously. Since the protein template did not evolve to bind artificial metal complexes tightly in a single conformation, efforts to restrict conformational freedom by modifying the metal complexes and/or the protein are required to achieve high enantioselectivity using the above two strategies. Here we report a novel site-selective dual anchoring (two-point covalent attachment) strategy to introduce an achiral manganese salen complex (Mn(salen)), into apo sperm whale myoglobin (Mb) with bioconjugation yield close to 100%. The enantioselective excess increases from 0.3% for non-covalent, to 12.3% for single point, and to 51.3% for dual anchoring attachments. The dual anchoring method has the advantage of restricting the conformational freedom of the metal complex in the protein and can be generally applied to protein incorporation of other metal complexes with minimal structural modification to either the metal complex or the protein.


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: 3.9
ee: 51
PDB: 1MBO
Notes: Sperm whale myoglobin

Asymmetric Catalytic Sulfoxidation by a Novel VIV8 Cluster Catalyst in the Presence of Serum Albumin: A Simple and Green Oxidation System

Bian, H.-D.; Huang, F.-P.

RSC Adv. 2016, 6, 44154-44162, 10.1039/C6RA08153C

Enantioselective oxidation of a series of alkyl aryl sulfides catalyzed by a novel VIV8 cluster is tested in an aqueous medium in the presence of serum albumin. The procedure is simple, environmentally friendly, selective, and highly reactive.


Metal: V
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 140
ee: 77
PDB: ---
Notes: Screening with different serum albumins.

Bovine Serum Albumin-Cobalt(II) Schiff Base Complex Hybrid: An Efficient Artificial Metalloenzyme for Enantioselective Sulfoxidation using Hydrogen Peroxide

Bian, H.-D.; Liang, H.

Dalton Trans. 2016, 45, 8061-8072, 10.1039/C5DT04507J

An artificial metalloenzyme (BSA–CoL) based on the incorporation of a cobalt(ii) Schiff base complex {CoL, H2L = 2,2′-[(1,2-ethanediyl)bis(nitrilopropylidyne)]bisphenol} with bovine serum albumin (BSA) has been synthesized and characterized.


Metal: Co
Ligand type: Amine; Phenolate
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 98
ee: 87
PDB: ---
Notes: ---

Catalysis Without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation

Ménage, S.

J. Mol. Catal. A: Chem. 2016, 416, 20-28, 10.1016/j.molcata.2016.02.015

A new artificial oxidase has been developed for selective transformation of thioanisole. The catalytic activity of an iron inorganic complex, FeLibu, embedded in a transport protein NikA has been investigated in aqueous media. High efficiency (up to 1367 t), frequency 459 TON min−1 and selectivity (up to 69%) make this easy to use catalytic system an asset for a sustainable chemistry.


Metal: Fe
Ligand type: BPHMEN
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 1367
ee: ---
PDB: ---
Notes: ---

Covalent Versus Non-covalent (Biocatalytic) Approaches for Enantioselective Sulfoxidation Catalyzed by Corrole Metal Complexes

Gross, Z.

Cat. Sci. Technol. 2011, 1, 578, 10.1039/c1cy00046b

Oxidation of thioanisoles, catalyzed by chiral manganese(III) and iron(III) corroles, provides the corresponding sulfoxides in moderate chemical yields and low enantioselectivities. Biocatalysis by non-chiral albumin-associated manganese(III) corroles proceeds much better and allows for the enantioselective synthesis of the pharmacologically important R-modafinil, in 88% yield and 73% ee.


Metal: Mn
Ligand type: Corrole
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 45
ee: 70
PDB: ---
Notes: ---

Enantioselective Sulfoxidation Mediated by Vanadium-Incorporated Phytase: A Hydrolase Acting as a Peroxidase

Sheldon, R.A.

Chem. Commun. 1998, 1891-1892, 10.1039/a804702b

Phytase (E.C. 3.1.3.8), which in vivo mediates the hydrolysis of phosphate esters, catalyses the enantioselective oxidation of thioanisole with H2O2, both in the presence and absence of vanadate ion, affording the S-sulfoxide in up to 66% ee at 100% conversion.


Metal: V
Ligand type: Undefined
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: ~194
ee: 66
PDB: ---
Notes: ---

Metal: V
Ligand type: Oxide
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: 550
ee: 66
PDB: ---
Notes: ---

Incorporation of Biotinylated Manganese-Salen Complexes into Streptavidin: New Artificial Metalloenzymes for Enantioselective Sulfoxidation

Ward, T.R.

J. Organomet. Chem. 2009, 694, 930-936, 10.1016/j.jorganchem.2008.11.023

Incorporation of achiral biotinylated manganese-salen complexes into streptavidin yields artificial metalloenzymes for aqueous sulfoxidation using hydrogen peroxide. Four biotinylated salen ligands were synthesized and their manganese complexes were tested in combination with several streptavidin mutants, yielding moderate conversions (up to 56%) and low enantioselectivities (maximum of 13% ee) for the sulfoxidation of thioanisole.


Metal: Mn
Ligand type: Oxide; Salen
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 28
ee: 13
PDB: ---
Notes: ---

Metal Substitution in Thermolysin: Catalytic Properties of Tungstate Thermolysin in Sulfoxidation with H2O2

Sheldon, R.A.

Can. J. Chem. 2002, 80, 622-625, 10.1139/v02-082

The catalytic Zn2+ ion was extracted from thermolysin, which had been covalently bound to Eupergit C. The apo-enzyme incorporated the oxometallate anions MoO42–, SeO42–, and WO42– with partial restoration of the proteolytic activity. Tungstate thermolysin was moderately active in the sulfoxidation of thioanisole by hydrogen peroxide, whereas its activity towards phenylmercaptoacetophenone, which was designed to bind well in the active site of thermolysin, was much higher.


Metal: W
Ligand type: Amino acid
Host protein: Thermolysin
Anchoring strategy: Metal substitution
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Neocarzinostatin-Based Hybrid Biocatalysts for Oxidation Reactions

Mahy, J.-P.; Ricoux, R.

Dalton Trans. 2014, 43, 8344-8354, 10.1039/c4dt00151f

An anionic iron(III)-porphyrin–testosterone conjugate 1-Fe has been synthesized and fully characterized. It has been further associated with a neocarzinostatin variant, NCS-3.24, to generate a new artificial metalloenzyme following the so-called ‘Trojan Horse’ strategy. This new 1-Fe-NCS-3.24 biocatalyst showed an interesting catalytic activity as it was found able to catalyze the chemoselective and slightly enantioselective (ee = 13%) sulfoxidation of thioanisole by H2O2. Molecular modelling studies show that a synergy between the binding of the steroid moiety and that of the porphyrin macrocycle into the protein binding site can explain the experimental results, indicating a better affinity of 1-Fe for the NCS-3.24 variant than testosterone and testosterone-hemisuccinate themselves. They also show that the Fe-porphyrin complex is sandwiched between the two subdomains of the protein providing with good complementarities. However, the artificial cofactor entirely fills the cavity and its metal ion remains widely exposed to the solvent which explains the moderate enantioselectivity observed. Some possible improvements in the “Trojan Horse” strategy for obtaining better catalysts of selective oxidations are presented.


Metal: Fe
Ligand type: Porphyrin
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 6
ee: 13
PDB: ---
Notes: ---

New Activities of a Catalytic Antibody with a Peroxidase Activity: Formation of Fe(II)–RNO Complexes and Stereoselective Oxidation of Sulfides

Mahy, J.-P.

Eur. J. Biochem. 2004, 271, 1277-1283, 10.1111/j.1432-1033.2004.04032.x

In order to estimate the size of the cavity remaining around the heme of the 3A3–microperoxidase 8 (MP8) hemoabzyme, the formation of 3A3–MP8–Fe(II)‐nitrosoalkane complexes upon oxidation of N‐monosubstituted hydroxylamines was examined. This constituted a new reaction for hemoabzymes and is the first example of fully characterized Fe(II)–metabolite complexes of antibody–porphyrin. Also, via a comparison of the reactions with N‐substituted hydroxylamines of various size and hydrophobicity, antibody 3A3 was confirmed to bring about a partial steric hindrance on the distal face of MP8. Subsequently, the influence of the antibody on the stereoselectivity of the S‐oxidation of sulfides was examined. Our results showed that MP8 alone and the antibody–MP8 complex catalyze the oxidation of thioanisole by H2O2 and tert‐butyl hydroperoxide, following a peroxidase‐like two‐step oxygen‐transfer mechanism involving a radical–cation intermediate. The best system, associating H2O2 as oxidant and 3A3–MP8 as a catalyst, in the presence of 5% tert‐butyl alcohol, led to the stereoselective S‐oxidation of thioanisole with a 45% enantiomeric excess in favour of the R isomer. This constitutes the highest enantiomeric excess reported to date for the oxidation of sulfides catalyzed by hemoabzymes.


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 3A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 82
ee: 45
PDB: ---
Notes: ---

Noncovalent Modulation of pH-Dependent Reactivity of a Mn–Salen Cofactor in Myoglobin with Hydrogen Peroxide

Lu, Y.

Chem. - Eur. J. 2009, 15, 7481-7489, 10.1002/chem.200802449

To demonstrate protein modulation of metal‐cofactor reactivity through noncovalent interactions, pH‐dependent sulfoxidation and 2,2′‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid) (ABTS) oxidation reactivity of a designed myoglobin (Mb) containing non‐native Mn–salen complex (1) was investigated using H2O2 as the oxidant. Incorporation of 1 inside the Mb resulted in an increase in the turnover numbers through exclusion of water from the metal complex and prevention of Mn–salen dimer formation. Interestingly, the presence of protein in itself is not enough to confer the increase activity as mutation of the distal His64 in Mb to Phe to remove hydrogen‐bonding interactions resulted in no increase in the turnover numbers, while mutation His64 to Arg, another residue with ability to hydrogen‐bond interactions, resulted in an increase in reactivity. These results strongly suggest that the distal ligand His64, through its hydrogen‐bonding interaction, plays important roles in enhancing and fine‐tuning reactivity of the Mn–salen complex. Nonlinear least‐squares fitting of rate versus pH plots demonstrates that 1⋅Mb(H64X) (X=H, R and F) and the control Mn–salen 1 exhibit pKa values varying from pH 6.4 to 8.3, and that the lower pKa of the distal ligand in 1⋅Mb(H64X), the higher the reactivity it achieves. Moreover, in addition to the pKa at high pH, 1⋅Mb displays another pKa at low pH, with pKa of 5.0±0.08. A comparison of the effect of different pH on sulfoxidation and ABTS oxidation indicates that, while the intermediate produced at low pH conditions could only perform sulfoxidation, the intermediate at high pH could oxidize both sulfoxides and ABTS. Such a fine‐control of reactivity through hydrogen‐bonding interactions by the distal ligand to bind, orient and activate H2O2 is very important for designing artificial enzymes with dramatic different and tunable reactivity from catalysts without protein scaffolds.


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 4.1
ee: 50
PDB: ---
Notes: Sperm whale myoglobin

Oxidation Catalysis via Visible-Light Water Activation of a [Ru(bpy)3]2+ Chromophore BSA–Metallocorrole Couple

Gross, Z.; Mahy, J.-P.

Dalton Trans. 2016, 45, 706-710, 10.1039/c5dt04158a

Light induced enantioselective oxidation of an organic molecule with water as the oxygen atom source is demonstrated in a system where chirality is induced by a protein, oxygen atom transfer by a manganese corrole, and photocatalysis by ruthenium complexes.


Metal: Mn
Ligand type: Corrole
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 21
ee: 16
PDB: ---
Notes: Water as oxygen source

Oxidation of Organic Molecules in Homogeneous Aqueous Solution Catalyzed by Hybrid Biocatalysts (Based on the Trojan Horse Strategy)

Mahy, J.-P.

Tetrahedron: Asymmetry 2010, 21, 1593-1600, 10.1016/j.tetasy.2010.03.050

New anionic metalloporphyrin–estradiol conjugates have been synthesized and fully characterized, and have been further associated to a monoclonal anti-estradiol antibody 7A3, to generate new artificial metalloenzymes following the so-called ‘Trojan Horse’ strategy. The spectroscopic characteristics and dissociation constants of these complexes were similar to those obtained for the artificial metalloproteins obtained by association of cationic metalloporphyrin–estradiol conjugates to 7A3. This demonstrates that the nature of the porphyrin substituents, anionic or cationic, had little influence on the association with the antibody that is mainly driven by the tight association of the estradiol anchor with the binding pocket of the antibody. These new biocatalysts appeared to have an interesting catalytic activity in oxidation reactions. The iron(III)–anionic-porphyrin–estradiol-antibody complexes were found able to catalyze the chemoselective and slightly enantioselective (ee = 10%) sulfoxidation of sulfides by H2O2. The Mn(III)–porphyrin–estradiol-antibody complexes were found to catalyze the oxidation of styrene by KHSO5, the Mn(III)–cationic-porphyrin–estradiol-antibody complexes even showing the highest yields so far reported for the oxidation of styrene catalyzed by artificial metalloproteins. However, a lack of chemoselectivity and enantioselectivity was observed, which was probably due to a weak interaction of the metalloporphyrin cofactor with the binding pocket of antibody 7A3, as suggested by the similar UV–visible characteristics and catalytic activities obtained with both anionic and cationic porphyrins.


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 7A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 9
ee: 10
PDB: ---
Notes: ---

Metal: Mn
Ligand type: Porphyrin
Host protein: Antibody 7A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Epoxidation
Max TON: 105
ee: ---
PDB: ---
Notes: Imidazole as co-catalyst

Protein Scaffold of a Designed Metalloenzyme Enhances the Chemoselectivity in Sulfoxidation of Thioanisole

Lu, Y.

Chem. Commun. 2008, 1665, 10.1039/b718915j

We demonstrate that incorporation of MnSalen into a protein scaffold enhances the chemoselectivity in sulfoxidation of thioanisole and find that both the polarity and hydrogen bonding of the protein scaffold play an important role in tuning the chemoselectivity.


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Sulfoxidation
Max TON: 5.2
ee: 60
PDB: ---
Notes: Sperm whale myoglobin

Selective Oxidation of Aromatic Sulfide Catalyzed by an Artificial Metalloenzyme: New Activity of Hemozymes

Mahy, J.-P.

Org. Biomol. Chem. 2009, 7, 3208, 10.1039/b907534h

Two new artificial hemoproteins or “hemozymes”, obtained by non covalent insertion of Fe(III)-meso-tetra-p-carboxy- and -p-sulfonato-phenylporphyrin into xylanase A from Streptomyces lividans, were characterized by UV-visible spectroscopy and molecular modeling studies, and were found to catalyze the chemo- and stereoselective oxidation of thioanisole into the S sulfoxide, the best yield (85 ± 4%) and enantiomeric excess (40% ± 3%) being obtained with Fe(III)-meso-tetra-p-carboxyphenylporphyrin-Xln10A as catalyst in the presence of imidazole as co-catalyst.


Metal: Fe
Ligand type: Porphyrin
Host protein: Xylanase A (XynA)
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 145
ee: 40
PDB: ---
Notes: ---

Stereoselective Sulfoxidation Catalyzed by Achiral Schiff Base Complexes in the Presence of Serum Albumin in Aqueous Media

Bian, H.-D.; Huang, F.-P.

Tetrahedron: Asymmetry 2017, 28, 1700-1707, 10.1016/j.tetasy.2017.10.021

Four coordination complexes ML derived from an achiral Schiff base ligand (H2L = 2,2′-[(1,2-ethanediyl)bis(nitrilopropylidyne)]bisphenol) have been synthesized and characterized. A method is described for the enantioselective oxidation of a series of aryl alkyl sulfides using the coordination complexes in the presence of serum albumins (SAs) in an aqueous medium at ambient temperature. The mixture of metal complexes with serum albumins is useful for inducing asymmetric catalysis. The complex, albumin source and substrate influence stereoselective sulfoxidation. At optimal pH with the appropriate oxidant, some of ML/SA systems are identified as very efficient catalysts, giving the corresponding sulfoxides in excellent chemical yield (up to 100%) and good enantioselectivity (up to 94% ee) in certain cases. UV–visible spectroscopic data provide evidence that stronger binding between the complex and serum albumin lead to higher enantioselectivity.


Metal: Co
Anchoring strategy: Undefined
Optimization: ---
Reaction: Sulfoxidation
Max TON: ~60
ee: 59
PDB: ---
Notes: ---

Synthesis of a New Estradiol–Iron Metalloporphyrin Conjugate Used to Build up a New Hybrid Biocatalyst for Selective Oxidations by the ‘Trojan Horse’ Strategy

Mahy, J.-P.

Tetrahedron Lett. 2008, 49, 1865-1869, 10.1016/j.tetlet.2008.01.022

The synthesis of a new cationic iron metalloporphyrin–estradiol conjugate is reported. After a study of its association with the anti-estradiol antibody 7A3 by UV–visible spectroscopy, the influence of the antibody on the sulfoxidation of thioanisole by H2O2 catalyzed by the iron–metalloporphyrin has been investigated.


Metal: Fe
Ligand type: Porphyrin
Host protein: Antibody 7A3
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Sulfoxidation
Max TON: 12
ee: 8
PDB: ---
Notes: ---

The Important Role of Covalent Anchor Positions in Tuning Catalytic Properties of a Rationally Designed MnSalen-Containing Metalloenzyme

Lu, Y.; Zhang, J.-L.

ACS Catal. 2011, 1, 1083-1089, 10.1021/cs200258e

Two questions important to the success in metalloenzyme design are how to attach or anchor metal cofactors inside protein scaffolds and in what way such positioning affects enzymatic properties. We have previously reported a dual anchoring method to position a nonnative cofactor, MnSalen (1), inside the heme cavity of apo sperm whale myoglobin (Mb) and showed that the dual anchoring can increase both the activity and enantioselectivity over single anchoring methods, making this artificial enzyme an ideal system to address the above questions. Here, we report systematic investigations of the effect of different covalent attachment or anchoring positions on reactivity and selectivity of sulfoxidation by the MnSalen-containing Mb enzymes. We have found that changing the left anchor from Y103C to T39C has an almost identical effect of increasing rate by 1.8-fold and increasing selectivity by +15% for S, whether the right anchor is L72C or S108C. At the same time, regardless of the identity of the left anchor, changing the right anchor from S108C to L72C increases the rate by 4-fold and selectivity by +66%. The right anchor site was observed to have a greater influence than the left anchor site on the reactivity and selectivity in sulfoxidation of a wide scope of other ortho-, meta- and para-substituted substrates. The 1·Mb(T39C/L72C) showed the highest reactivity (TON up to 2.32 min–1) and selectivity (ee % up to 83%) among the different anchoring positions examined. Molecular dynamic simulations indicate that these changes in reactivity and selectivity may be due to the steric effects of the linker arms inside the protein cavity. These results indicate that small differences in the anchor positions can result in significant changes in reactivity and enantioselectivity, probably through steric interactions with substrates when they enter the substrate-binding pocket, and that the effects of right and left anchor positions are independent and additive in nature. The finding that the anchoring arms can influence both the positioning of the cofactor and steric control of substrate entrance will help design better functional metalloenzymes with predicted catalytic activity and selectivity.


Metal: Mn
Ligand type: Salen
Host protein: Myoglobin (Mb)
Anchoring strategy: Covalent
Optimization: Genetic
Reaction: Sulfoxidation
Max TON: ---
ee: 83
PDB: ---
Notes: Reaction rate: 2.3 min-1

The Protein Environment Drives Selectivity for Sulfide Oxidation by an Artificial Metalloenzyme

Cavazza, C.; Ménage, S.

ChemBioChem 2009, 10, 545-552, 10.1002/cbic.200800595

Magic Mn–salen metallozyme: The design of an original, artificial, inorganic, complex‐protein adduct, has led to a better understanding of the synergistic effects of both partners. The exclusive formation of sulfoxides by the hybrid biocatalyst, as opposed to sulfone in the case of the free inorganic complex, highlights the modulating role of the inorganic‐complex‐binding site in the protein.


Metal: Mn
Ligand type: Salen
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 97
ee: ---
PDB: ---
Notes: ---

The Rational Design of Semisynthetic Peroxidases

Sheldon, R.A.

Biotechnol. Bioeng. 2000, 67, 87-96, 10.1002/(SICI)1097-0290(20000105)67:1<87::AID-BIT10>3.0.CO;2-8

A semisynthetic peroxidase was designed by exploiting the structural similarity of the active sites of vanadium dependent haloperoxidases and acid phosphatases. Incorporation of vanadate ion into the active site of phytase (E.C. 3.1.3.8), which mediates in vivo the hydrolysis of phosphate esters, leads to the formation of a semisynthetic peroxidase, which catalyzes the enantioselective oxidation of prochiral sulfides with H2O2 affording the S‐sulfoxide, e.g. in 66% ee at 100% conversion for thioanisole. Under reaction conditions the semi‐synthetic vanadium peroxidase is stable for over 3 days with only a slight decrease in turnover frequency. Polar water‐miscible cosolvents, such as methanol, dioxane, and dimethoxyethane, can be used in concentrations of 30% (v/v) at a small penalty in activity and enantioselectivity. Among the transition metal oxoanions that are known to be potent inhibitors, only vanadate resulted in a semisynthetic peroxidase when incorporated into phytase. A number of other acid phosphatases and hydrolases were tested for peroxidase activity, when incorporated with vanadate ion. Phytases from Aspergillus ficuum, A. fumigatus, and A. nidulans, sulfatase from Helix pomatia, and phospholipase D from cabbage catalyzed enantioselective oxygen transfer reactions when incorporated with vanadium. However, phytase from A. ficuum was unique in also catalyzing the enantioselective sulfoxidation, albeit at a lower rate, in the absence of vanadate ion.


Metal: V
Ligand type: Oxide
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: ---
ee: 66
PDB: ---
Notes: Reaction performed in 30% organic co-solvent.

Vanadium-Catalysed Enantioselective Sulfoxidations: Rational Design of Biocatalytic and Biomimetic Systems

Sheldon, R.A.

Top. Catal. 2000, 13, 259-265, 10.1023/A:1009094619249

Approaches to the rational design of vanadium-based biocatalytic and biomimetic model systems as catalysts for enantioselective oxidations are reviewed. Incorporation of vanadate ion into the active site of phytase (E.C. 3.1.3.8), which in vivo mediates the hydrolysis of phosphate esters, afforded a relatively stable and inexpensive semi-synthetic peroxidase. It catalysed the enantioselective oxidation of prochiral sulfides with H2O2 affording the S-sulfoxide, e.g., in 68% ee at 100% conversion for thioanisole. Amongst the transition metal oxoanions that are known to be potent inhibitors of phosphatases, only vanadate resulted in a semi-synthetic peroxidase, when incorporated into phytase. In a biomimetic approach, vanadium complexes of chiral Schiff's base complexes were encapsulated in the super cages of a hydrophobic zeolite Y. Unfortunately, these ship-in-a-bottle complexes afforded only racemic sulfoxide in the catalytic oxidation of thioanisole with H2O2.


Metal: V
Ligand type: Oxide
Host protein: Phytase
Anchoring strategy: Undefined
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: ---
ee: 68
PDB: ---
Notes: ---

Various Strategies for Obtaining Artificial Hemoproteins: From "Hemoabzymes" to "Hemozymes"

Mahy, J.-P.

Biochimie 2009, 91, 1321-1323, 10.1016/j.biochi.2009.03.002

The design of artificial hemoproteins that could lead to new biocatalysts for selective oxidation reactions of organic compounds presents a huge interest especially in pharmacology, both for a better understanding of the metabolic profile of drugs and for the synthesis of enantiomerically pure molecules that could be involved in the design of drugs. The present results show that the so-called “host-guest strategy” that involves the non-covalent incorporation of anionic water-soluble iron-porphyrins into xylanase A from Streptomyces lividans, a low cost protein, leads to such an artificial hemoprotein that is able to perform the stereoselective oxidation of sulfides.


Metal: Fe
Ligand type: Porphyrin
Host protein: Xylanase A (XynA)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: ---
ee: 36
PDB: ---
Notes: ---