Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

30 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell

Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.

Metal:

Ru

Ligand type:

Cp; Quinoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Deallylation

Max TON:

33

ee:

---

PDB:

---

Notes:

---

Addressable DNA–Myoglobin Photocatalysis

A hybrid myoglobin, containing a single‐stranded DNA anchor and a redox‐active ruthenium moiety tethered to the heme center can be used as a photocatalyst. The catalyst can be selectively immobilized on a surface‐bound complementary DNA molecule and thus readily recycled from complex reaction mixtures. This principle may be applied to a range of heme‐dependent enzymes allowing the generation of novel light‐triggered photocatalysts. Photoactivatable myoglobin containing a DNA oligonucleotide as a structural anchor was designed by using the reconstitution of artificial heme moieties containing Ru3+ ions. This semisynthetic DNA–enzyme conjugate was successfully used for the oxidation of peroxidase substrates by using visible light instead of H2O2 for the activation. The DNA anchor was utilized for the immobilization of the enzyme on the surface of magnetic microbeads. Enzyme activity measurements not only indicated undisturbed biofunctionality of the tethered DNA but also enabled magnetic separation‐based enrichment and recycling of the photoactivatable biocatalyst.

Metal:

Ru

Ligand type:

Bipyridine

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Supramolecular

Optimization:

---

Reaction:

Photooxidation

Max TON:

---

ee:

---

PDB:

---

Notes:

Horse heart myoglobin

A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel Protein

A series of Grubbs–Hoveyda type catalyst precursors for olefin metathesis containing a maleimide moiety in the backbone of the NHC ligand was covalently incorporated in the cavity of the β-barrel protein nitrobindin. By using two protein mutants with different cavity sizes and choosing the suitable spacer length, an artificial metalloenzyme for olefin metathesis reactions in water in the absence of any organic cosolvents was obtained. High efficiencies reaching TON > 9000 in the ROMP of a water-soluble 7-oxanorbornene derivative and TON > 100 in ring-closing metathesis (RCM) of 4,4-bis(hydroxymethyl)-1,6-heptadiene in water under relatively mild conditions (pH 6, T = 25–40 °C) were observed.

Metal:

Ru

Ligand type:

Carbene

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

9900

ee:

---

PDB:

---

Notes:

ROMP (cis/trans: 48/52)

Metal:

Ru

Ligand type:

Carbene

Host protein:

Nitrobindin (Nb)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

100

ee:

---

PDB:

---

Notes:

RCM

A Hybrid Ring- Opening Metathesis Polymerization Catalyst Based on an Engineered Variant of the Beta-Barrel Protein FhuA

A β‐barrel protein hybrid catalyst was prepared by covalently anchoring a Grubbs–Hoveyda type olefin metathesis catalyst at a single accessible cysteine amino acid in the barrel interior of a variant of β‐barrel transmembrane protein ferric hydroxamate uptake protein component A (FhuA). Activity of this hybrid catalyst type was demonstrated by ring‐opening metathesis polymerization of a 7‐oxanorbornene derivative in aqueous solution.

Metal:

Ru

Ligand type:

Carbene

Host protein:

FhuA ΔCVFtev

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

955

ee:

---

PDB:

---

Notes:

ROMP

An Artificial Metalloenzyme for Olefin Metathesis

A Grubbs–Hoveyda type olefin metathesis catalyst, equipped with an electrophilic bromoacetamide group, was used to modify a cysteine-containing variant of a small heat shock protein from Methanocaldococcus jannaschii. The resulting artificial metalloenzyme was found to be active under acidic conditions in a benchmark ring closing metathesis reaction.

Metal:

Ru

Ligand type:

Carbene

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Olefin metathesis

Max TON:

25

ee:

---

PDB:

---

Notes:

RCM

Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes

Metal:

Ru

Ligand type:

Porphyrin

Host protein:

Antibody SN37.4

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Sulfoxidation

Max TON:

750

ee:

43

PDB:

---

Notes:

---

Aqueous Oxidation of Alcohols Catalyzed by Artificial Metalloenzymes Based on the Biotin–Avidin Technology

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

200

ee:

---

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

230

ee:

---

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Bipyridine; C6Me6

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

173

ee:

---

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

7.5

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

30

ee:

---

PDB:

---

Notes:

---

Artificial Metalloenzymes Based on Biotin-Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

92

ee:

94

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

30

ee:

63

PDB:

---

Notes:

---

Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-(Strept)Avidin Technology

Metal:

Ru

Ligand type:

Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

14

ee:

---

PDB:

---

Notes:

RCM

Metal:

Ru

Ligand type:

Carbene

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

19

ee:

---

PDB:

---

Notes:

RCM

Artificial Transfer Hydrogenases Based on the Biotin-(Strept)avidin Technology: Fine Tuning the Selectivity by Saturation Mutagenesis of the Host Protein

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

96

ee:

80

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

73

ee:

60

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

95

ee:

70

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

79

ee:

97

PDB:

---

Notes:

---

Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

4000

ee:

96

PDB:

3PK2

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

94

ee:

52

PDB:

3PK2

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

97

ee:

22

PDB:

3PK2

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

76

ee:

12

PDB:

3PK2

Notes:

---

Carbonic Anhydrase II as Host Protein for the Creation of a Biocompatible Artificial Metathesase

Metal:

Ru

Ligand type:

Carbene

Anchoring strategy:

Dative

Optimization:

Chemical & genetic

Reaction:

Olefin metathesis

Max TON:

28

ee:

---

PDB:

---

Notes:

Ring closing metathesis. 28 turnovers obtained under physiological conditions within 4 hours.

Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

970

ee:

13

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

158

ee:

82

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Olefin metathesis

Max TON:

105

ee:

---

PDB:

---

Notes:

RCM, biotinylated Hoveyda-Grubbs second generation catalyst

Metal:

---

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Anion-π catalysis

Max TON:

6

ee:

41

PDB:

---

Notes:

No metal

Covalent Anchoring of a Racemization Catalyst to CALB-Beads: Towards Dual Immobilization of DKR Catalysts

Metal:

Ru

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Acylation

Max TON:

---

ee:

>99%

PDB:

---

Notes:

Lipase CALB is immobilized on a solid support (Novozym®435). Dynamic kinetic resolution (DKR) of 1-phenylethanol to the acylated product.

Creation of an Artificial Metalloprotein with a Hoveyda–Grubbs Catalyst Moiety through the Intrinsic Inhibition Mechanism of α-Chymotrypsin

Metal:

Ru

Ligand type:

Carbene

Host protein:

α-chymotrypsin

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Olefin metathesis

Max TON:

20

ee:

---

PDB:

---

Notes:

RCM

Directed Evolution of Artificial Metalloenzymes for In Vivo Metathesis

Metal:

Ru

Ligand type:

Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Olefin metathesis

Max TON:

610

ee:

---

PDB:

---

Notes:

Reaction in the periplasm

Diruthenium Diacetate-Catalyzed Aerobic Oxidation of Hydroxylamines and Improved Chemoselectivity by Immobilization to Lysozyme

Metal:

Ru

Ligand type:

Amino acid; OAc

Host protein:

Lysozyme

Anchoring strategy:

Dative

Optimization:

Chemical

Max TON:

1000

ee:

---

PDB:

---

Notes:

---

Dual Modification of a Triple-Stranded β-Helix Nanotube with Ru and Re Metal Complexes to Promote Photocatalytic Reduction of CO2

Metal:

Re

Ligand type:

Bipyridine; CO

Host protein:

[(gp5βf)3]2

Anchoring strategy:

Cystein-maleimide

Optimization:

---

Reaction:

CO2 reduction

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Bipyridine

Host protein:

[(gp5βf)3]2

Anchoring strategy:

Lysine-succinimide

Optimization:

Genetic

Reaction:

CO2 reduction

Max TON:

---

ee:

---

PDB:

---

Notes:

---

E. coli Surface Display of Streptavidin for Directed Evolution of an Allylic Deallylase

Metal:

Ru

Ligand type:

Cp; Quinoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Deallylation

Max TON:

148

ee:

---

PDB:

6FH8

Notes:

---

Hybrid Ruthenium ROMP Catalysts Based on an Engineered Variant of β-Barrel Protein FhuA ΔCVFtev: Effect of Spacer Length

Metal:

Ru

Ligand type:

Carbene

Host protein:

FhuA ΔCVFtev

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

555

ee:

---

PDB:

---

Notes:

ROMP; cis/trans = 58/42

Improving the Enantioselectivity of Artificial Transfer Hydrogenases Based on the Biotin–Streptavidin Technology by Combinations of Point Mutations

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

98

ee:

98

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

24

ee:

84

PDB:

Notes:

---

Library Design and Screening Protocol for Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

183

ee:

71

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ir

Ligand type:

Cp*; Diamine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

42

ee:

59

PDB:

---

Notes:

Cell free extract (mutant Sav K121A) treated with diamide

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

66

ee:

---

PDB:

---

Notes:

Purified streptavidin (mutant K121A)

Metal:

Ru

Ligand type:

N-heterocyclic carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

18

ee:

---

PDB:

---

Notes:

Cell free extract (mutant Sav K121A immobilised on iminobiotin-sepharose beads)

Metal-Conjugated Affinity Labels: A New Concept to Create Enantioselective Artificial Metalloenzymes

Metal:

Rh

Ligand type:

Cp*; Phosphine

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

89

ee:

64

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Benzene; Phosphine

Host protein:

Bromelain

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

44

ee:

20

PDB:

---

Notes:

---

On-Cell Catalysis by Surface Engineering of Live Cells with an Artificial Metalloenzyme

Metal:

Ru

Ligand type:

Cp; Quinoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Deallylation

Max TON:

80

ee:

---

PDB:

---

Notes:

Catalysis on algae surface

Porous Protein Crystals as Catalytic Vessels for Organometallic Complexes

Metal:

Ru

Ligand type:

Benzene

Host protein:

Lysozyme (crystal)

Anchoring strategy:

Dative

Optimization:

---

Max TON:

---

ee:

---

PDB:

3W6A

Notes:

Tetragonal HEWL crystals

Metal:

Ru

Ligand type:

Benzene

Host protein:

Lysozyme (crystal)

Anchoring strategy:

Dative

Optimization:

---

Max TON:

---

ee:

---

PDB:

3W6A

Notes:

Orthorhombic HEWL crystals

Proteins as Macromolecular Ligands for Metal-Catalysed Asymmetric Transfer Hydrogenation of Ketones in Aqueous Medium

Metal:

Ru

Ligand type:

Benzene derivatives

Anchoring strategy:

Undefined

Optimization:

---

Max TON:

43

ee:

82

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Cp*

Anchoring strategy:

Undefined

Optimization:

---

Max TON:

16

ee:

14

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Cp*

Anchoring strategy:

Undefined

Optimization:

---

Max TON:

20

ee:

16

PDB:

---

Notes:

---

Ring-Closing and Cross-Metathesis with Artificial Metalloenzymes Created by Covalent Active Site- Directed Hybridization of a Lipase

Metal:

Ru

Ligand type:

Carbene

Host protein:

Cutinase

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

17

ee:

---

PDB:

---

Notes:

RCM

Metal:

Ru

Ligand type:

Carbene

Host protein:

Cutinase

Anchoring strategy:

Covalent

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

20

ee:

---

PDB:

---

Notes:

Cross metathesis

Semisynthesis of Bipyridyl-Alanine Cytochrome c Mutants: Novel Proteins with Enhanced Electron-Transfer Properties

Metal:

Fe; Ru

Ligand type:

Bipyridine; Porphyrin

Host protein:

Horse heart cytochrome c

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Electron transfer

Max TON:

---

ee:

---

PDB:

---

Notes:

No catalysis

X-Ray Structure and Designed Evolution of an Artificial Transfer Hydrogenase

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

100

ee:

92

PDB:

2QCB

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

97

ee:

96

PDB:

2QCB

Notes:

---

(η6-Arene) Ruthenium(II) Complexes and Metallo-Papain Hybrid as Lewis Acid Catalysts of Diels–Alder Reaction in Water

Covalent embedding of a (η6-arene) ruthenium(II) complex into the protein papain gives rise to a metalloenzyme displaying a catalytic efficiency for a Lewis acid-mediated catalysed Diels–Alder reaction enhanced by two orders of magnitude in water.

Metal:

Ru

Ligand type:

Benzene; Phenanthroline

Host protein:

Papain (PAP)

Anchoring strategy:

Covalent

Optimization:

Chemical

Max TON:

440

ee:

---

PDB:

---

Notes:

TOF = 220 h-1