30 publications

30 publications

A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell

Fussenegger, M.; Matile, S.; Ward, T. R.

Nat. Commun., 2018, 10.1038/s41467-018-04440-0

Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.


Metal: Ru
Ligand type: Cp; Quinoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Deallylation
Max TON: 33
ee: ---
PDB: ---
Notes: ---

Addressable DNA–Myoglobin Photocatalysis

Niemeyer, C. M.

Chem. - Asian J., 2009, 10.1002/asia.200900082

A hybrid myoglobin, containing a single‐stranded DNA anchor and a redox‐active ruthenium moiety tethered to the heme center can be used as a photocatalyst. The catalyst can be selectively immobilized on a surface‐bound complementary DNA molecule and thus readily recycled from complex reaction mixtures. This principle may be applied to a range of heme‐dependent enzymes allowing the generation of novel light‐triggered photocatalysts. Photoactivatable myoglobin containing a DNA oligonucleotide as a structural anchor was designed by using the reconstitution of artificial heme moieties containing Ru3+ ions. This semisynthetic DNA–enzyme conjugate was successfully used for the oxidation of peroxidase substrates by using visible light instead of H2O2 for the activation. The DNA anchor was utilized for the immobilization of the enzyme on the surface of magnetic microbeads. Enzyme activity measurements not only indicated undisturbed biofunctionality of the tethered DNA but also enabled magnetic separation‐based enrichment and recycling of the photoactivatable biocatalyst.


Metal: Ru
Ligand type: Bipyridine
Host protein: Myoglobin (Mb)
Anchoring strategy: Supramolecular
Optimization: ---
Reaction: Photooxidation
Max TON: ---
ee: ---
PDB: ---
Notes: Horse heart myoglobin

A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel Protein

Okuda, J.

ACS Catal., 2015, 10.1021/acscatal.5b01792

A series of Grubbs–Hoveyda type catalyst precursors for olefin metathesis containing a maleimide moiety in the backbone of the NHC ligand was covalently incorporated in the cavity of the β-barrel protein nitrobindin. By using two protein mutants with different cavity sizes and choosing the suitable spacer length, an artificial metalloenzyme for olefin metathesis reactions in water in the absence of any organic cosolvents was obtained. High efficiencies reaching TON > 9000 in the ROMP of a water-soluble 7-oxanorbornene derivative and TON > 100 in ring-closing metathesis (RCM) of 4,4-bis(hydroxymethyl)-1,6-heptadiene in water under relatively mild conditions (pH 6, T = 25–40 °C) were observed.


Metal: Ru
Ligand type: Carbene
Host protein: Nitrobindin (Nb)
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 9900
ee: ---
PDB: ---
Notes: ROMP (cis/trans: 48/52)

Metal: Ru
Ligand type: Carbene
Host protein: Nitrobindin (Nb)
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 100
ee: ---
PDB: ---
Notes: RCM

A Hybrid Ring- Opening Metathesis Polymerization Catalyst Based on an Engineered Variant of the Beta-Barrel Protein FhuA

Okuda, J.; Schwaneberg, U.

Chem. - Eur. J., 2013, 10.1002/chem.201301515

A β‐barrel protein hybrid catalyst was prepared by covalently anchoring a Grubbs–Hoveyda type olefin metathesis catalyst at a single accessible cysteine amino acid in the barrel interior of a variant of β‐barrel transmembrane protein ferric hydroxamate uptake protein component A (FhuA). Activity of this hybrid catalyst type was demonstrated by ring‐opening metathesis polymerization of a 7‐oxanorbornene derivative in aqueous solution.


Metal: Ru
Ligand type: Carbene
Host protein: FhuA ΔCVFtev
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 955
ee: ---
PDB: ---
Notes: ROMP

An Artificial Metalloenzyme for Olefin Metathesis

Hilvert, D.; Ward, T. R.

Chem. Commun., 2011, 10.1039/c1cc15005g

A Grubbs–Hoveyda type olefin metathesis catalyst, equipped with an electrophilic bromoacetamide group, was used to modify a cysteine-containing variant of a small heat shock protein from Methanocaldococcus jannaschii. The resulting artificial metalloenzyme was found to be active under acidic conditions in a benchmark ring closing metathesis reaction.


Metal: Ru
Ligand type: Carbene
Anchoring strategy: Covalent
Optimization: ---
Reaction: Olefin metathesis
Max TON: 25
ee: ---
PDB: ---
Notes: RCM

Antibody-Metalloporphyrin Catalytic Assembly Mimics Natural Oxidation Enzymes

Keinan, E.

J. Am. Chem. Soc., 1999, 10.1021/ja990314q


Metal: Ru
Ligand type: Porphyrin
Host protein: Antibody SN37.4
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Sulfoxidation
Max TON: 750
ee: 43
PDB: ---
Notes: ---

Aqueous Oxidation of Alcohols Catalyzed by Artificial Metalloenzymes Based on the Biotin–Avidin Technology

Ward, T. R.

J. Organomet. Chem., 2005, 10.1016/j.jorganchem.2005.02.001


Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 200
ee: ---
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Avidin (Av)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 230
ee: ---
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Bipyridine; C6Me6
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 173
ee: ---
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 7.5
ee: ---
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Bipyridine; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Reaction: Alcohol oxidation
Max TON: 30
ee: ---
PDB: ---
Notes: ---

Artificial Metalloenzymes Based on Biotin-Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation

Ward, T. R.

Proc. Natl. Acad. Sci. U. S. A., 2005, 10.1073/pnas.0409684102


Metal: Ru
Ligand type: Amino-sulfonamide; P-cymene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 92
ee: 94
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 30
ee: 63
PDB: ---
Notes: ---

Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-(Strept)Avidin Technology

Ward, T. R.

Chem. Commun., 2011, 10.1039/c1cc15004a


Metal: Ru
Ligand type: Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 14
ee: ---
PDB: ---
Notes: RCM

Metal: Ru
Ligand type: Carbene
Host protein: Avidin (Av)
Anchoring strategy: Supramolecular
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 19
ee: ---
PDB: ---
Notes: RCM

Artificial Transfer Hydrogenases Based on the Biotin-(Strept)avidin Technology: Fine Tuning the Selectivity by Saturation Mutagenesis of the Host Protein

Ward, T. R.

J. Am. Chem. Soc., 2006, 10.1021/ja061580o


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 96
ee: 80
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 73
ee: 60
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 95
ee: 70
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; P-cymene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 79
ee: 97
PDB: ---
Notes: ---

Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines

Ward, T. R.

Angew. Chem., Int. Ed., 2011, 10.1002/anie.201007820


Metal: Ir
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 4000
ee: 96
PDB: 3PK2
Notes: ---

Metal: Rh
Ligand type: Amino-sulfonamide; Cp*
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 94
ee: 52
PDB: 3PK2
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; P-cymene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 97
ee: 22
PDB: 3PK2
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 76
ee: 12
PDB: 3PK2
Notes: ---

Carbonic Anhydrase II as Host Protein for the Creation of a Biocompatible Artificial Metathesase

Ward, T. R.

Org. Biomol. Chem., 2015, 10.1039/c5ob00428d


Metal: Ru
Ligand type: Carbene
Anchoring strategy: Dative
Optimization: Chemical & genetic
Reaction: Olefin metathesis
Max TON: 28
ee: ---
PDB: ---
Notes: Ring closing metathesis. 28 turnovers obtained under physiological conditions within 4 hours.

Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes

Ward, T. R.; Woolfson, D. N.

ACS Catal., 2018, 10.1021/acscatal.7b03773


Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 970
ee: 13
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Max TON: 158
ee: 82
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Olefin metathesis
Max TON: 105
ee: ---
PDB: ---
Notes: RCM, biotinylated Hoveyda-Grubbs second generation catalyst

Metal: ---
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Anion-π catalysis
Max TON: 6
ee: 41
PDB: ---
Notes: No metal

Covalent Anchoring of a Racemization Catalyst to CALB-Beads: Towards Dual Immobilization of DKR Catalysts

Klein Gebbink, R. J. M.; van Koten, G.

Tetrahedron Lett., 2011, 10.1016/j.tetlet.2011.01.106


Metal: Ru
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Acylation
Max TON: ---
ee: >99%
PDB: ---
Notes: Lipase CALB is immobilized on a solid support (Novozym®435). Dynamic kinetic resolution (DKR) of 1-phenylethanol to the acylated product.

Creation of an Artificial Metalloprotein with a Hoveyda–Grubbs Catalyst Moiety through the Intrinsic Inhibition Mechanism of α-Chymotrypsin

Chem. Commun., 2012, 10.1039/c2cc16898g


Metal: Ru
Ligand type: Carbene
Host protein: α-chymotrypsin
Anchoring strategy: Covalent
Optimization: ---
Reaction: Olefin metathesis
Max TON: 20
ee: ---
PDB: ---
Notes: RCM

Directed Evolution of Artificial Metalloenzymes for In Vivo Metathesis

Panke, S.; Ward, T. R.

Nature, 2016, 10.1038/nature19114


Metal: Ru
Ligand type: Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Olefin metathesis
Max TON: 610
ee: ---
PDB: ---
Notes: Reaction in the periplasm

Diruthenium Diacetate-Catalyzed Aerobic Oxidation of Hydroxylamines and Improved Chemoselectivity by Immobilization to Lysozyme

Cardona, F.; Goti, A.; Messori, L.

ChemCatChem, 2017, 10.1002/cctc.201701083


Metal: Ru
Ligand type: Amino acid; OAc
Host protein: Lysozyme
Anchoring strategy: Dative
Optimization: Chemical
Max TON: 1000
ee: ---
PDB: ---
Notes: ---

Dual Modification of a Triple-Stranded β-Helix Nanotube with Ru and Re Metal Complexes to Promote Photocatalytic Reduction of CO2

Ueno, T.

Chem. Commun., 2011, 10.1039/C0CC03015E


Metal: Re
Ligand type: Bipyridine; CO
Host protein: [(gp5βf)3]2
Anchoring strategy: Cystein-maleimide
Optimization: ---
Reaction: CO2 reduction
Max TON: ---
ee: ---
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Bipyridine
Host protein: [(gp5βf)3]2
Anchoring strategy: Lysine-succinimide
Optimization: Genetic
Reaction: CO2 reduction
Max TON: ---
ee: ---
PDB: ---
Notes: ---

E. coli Surface Display of Streptavidin for Directed Evolution of an Allylic Deallylase

Ward, T. R.

Chem. Sci., 2018, 10.1039/c8sc00484f


Metal: Ru
Ligand type: Cp; Quinoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Deallylation
Max TON: 148
ee: ---
PDB: 6FH8
Notes: ---

Hybrid Ruthenium ROMP Catalysts Based on an Engineered Variant of β-Barrel Protein FhuA ΔCVFtev: Effect of Spacer Length

Okuda, J.

Chem. - Asian J., 2015, 10.1002/asia.201403005


Metal: Ru
Ligand type: Carbene
Host protein: FhuA ΔCVFtev
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 555
ee: ---
PDB: ---
Notes: ROMP; cis/trans = 58/42

Improving the Enantioselectivity of Artificial Transfer Hydrogenases Based on the Biotin–Streptavidin Technology by Combinations of Point Mutations

Ward, T. R.

Inorg. Chim. Acta, 2010, 10.1016/j.ica.2009.02.001


Metal: Ru
Ligand type: Amino-sulfonamide; P-cymene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 98
ee: 98
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 24
ee: 84
PDB: 2QCB
Notes: ---

Library Design and Screening Protocol for Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology

Ward, T. R.

Nat. Protoc., 2016, 10.1038/nprot.2016.019


Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 183
ee: 71
PDB: ---
Notes: Purified streptavidin (mutant K121A)

Metal: Ir
Ligand type: Cp*; Diamine
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 42
ee: 59
PDB: ---
Notes: Cell free extract (mutant Sav K121A) treated with diamide

Metal: Ru
Ligand type: N-heterocyclic carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 66
ee: ---
PDB: ---
Notes: Purified streptavidin (mutant K121A)

Metal: Ru
Ligand type: N-heterocyclic carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 18
ee: ---
PDB: ---
Notes: Cell free extract (mutant Sav K121A immobilised on iminobiotin-sepharose beads)

Metal-Conjugated Affinity Labels: A New Concept to Create Enantioselective Artificial Metalloenzymes

Eppinger, J.

ChemistryOpen, 2013, 10.1002/open.201200044


Metal: Rh
Ligand type: Cp*; Phosphine
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Hydrogenation
Max TON: 89
ee: 64
PDB: ---
Notes: ---

Metal: Ru
Ligand type: Benzene; Phosphine
Host protein: Bromelain
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Hydrogenation
Max TON: 44
ee: 20
PDB: ---
Notes: ---

On-Cell Catalysis by Surface Engineering of Live Cells with an Artificial Metalloenzyme

Gademann, K.

Commun. Chem., 2018, 10.1038/s42004-018-0087-y


Metal: Ru
Ligand type: Cp; Quinoline
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Deallylation
Max TON: 80
ee: ---
PDB: ---
Notes: Catalysis on algae surface

Porous Protein Crystals as Catalytic Vessels for Organometallic Complexes

Kitagawa, S.; Ueno, T.

Chem. - Asian J., 2014, 10.1002/asia.201301347


Metal: Ru
Ligand type: Benzene
Host protein: Lysozyme (crystal)
Anchoring strategy: Dative
Optimization: ---
Max TON: ---
ee: ---
PDB: 3W6A
Notes: Tetragonal HEWL crystals

Metal: Ru
Ligand type: Benzene
Host protein: Lysozyme (crystal)
Anchoring strategy: Dative
Optimization: ---
Max TON: ---
ee: ---
PDB: 4J7V
Notes: Orthorhombic HEWL crystals

Proteins as Macromolecular Ligands for Metal-Catalysed Asymmetric Transfer Hydrogenation of Ketones in Aqueous Medium

Salmain, M.

Eur. J. Inorg. Chem., 2018, 10.1002/ejic.201701359


Metal: Ru
Ligand type: Benzene derivatives
Anchoring strategy: Undefined
Optimization: ---
Max TON: 43
ee: 82
PDB: ---
Notes: ---

Metal: Rh
Ligand type: Cp*
Anchoring strategy: Undefined
Optimization: ---
Max TON: 16
ee: 14
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Cp*
Anchoring strategy: Undefined
Optimization: ---
Max TON: 20
ee: 16
PDB: ---
Notes: ---

Ring-Closing and Cross-Metathesis with Artificial Metalloenzymes Created by Covalent Active Site- Directed Hybridization of a Lipase

Klein Gebbink, R. J. M.

Chem. - Eur. J., 2015, 10.1002/chem.201502381


Metal: Ru
Ligand type: Carbene
Host protein: Cutinase
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 17
ee: ---
PDB: ---
Notes: RCM

Metal: Ru
Ligand type: Carbene
Host protein: Cutinase
Anchoring strategy: Covalent
Optimization: Chemical
Reaction: Olefin metathesis
Max TON: 20
ee: ---
PDB: ---
Notes: Cross metathesis

Semisynthesis of Bipyridyl-Alanine Cytochrome c Mutants: Novel Proteins with Enhanced Electron-Transfer Properties

Gray, H. B.; Imperiali, B.

J. Am. Chem. Soc., 1993, 10.1021/ja00071a068


Metal: Fe; Ru
Ligand type: Bipyridine; Porphyrin
Host protein: Horse heart cytochrome c
Anchoring strategy: Covalent
Optimization: ---
Reaction: Electron transfer
Max TON: ---
ee: ---
PDB: ---
Notes: No catalysis

X-Ray Structure and Designed Evolution of an Artificial Transfer Hydrogenase

Ward, T. R.

Angew. Chem., Int. Ed., 2008, 10.1002/anie.200704865


Metal: Ru
Ligand type: Amino-sulfonamide; Benzene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 100
ee: 92
PDB: 2QCB
Notes: ---

Metal: Ru
Ligand type: Amino-sulfonamide; P-cymene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Chemical & genetic
Max TON: 97
ee: 96
PDB: 2QCB
Notes: ---

(η6-Arene) Ruthenium(II) Complexes and Metallo-Papain Hybrid as Lewis Acid Catalysts of Diels–Alder Reaction in Water

Salmain, M.

Dalton Trans., 2010, 10.1039/c001630f

Covalent embedding of a (η6-arene) ruthenium(II) complex into the protein papain gives rise to a metalloenzyme displaying a catalytic efficiency for a Lewis acid-mediated catalysed Diels–Alder reaction enhanced by two orders of magnitude in water.


Metal: Ru
Ligand type: Benzene; Phenanthroline
Host protein: Papain (PAP)
Anchoring strategy: Covalent
Optimization: Chemical
Max TON: 440
ee: ---
PDB: ---
Notes: TOF = 220 h-1