3 publications
-
An Artificial Oxygenase Built from Scratch: Substrate Binding Site Identified Using a Docking Approach
-
Angew. Chem. Int. Ed. 2013, 52, 3922-3925, 10.1002/anie.201209021
The substrate for an artificial iron monooxygenase was selected by using docking calculations. The high catalytic efficiency of the reported enzyme for sulfide oxidation was directly correlated to the predicted substrate binding mode in the protein cavity, thus illustrating the synergetic effect of the substrate binding site, protein scaffold, and catalytic site.
Notes: ---
-
Cross-Linked Artificial Enzyme Crystals as Heterogeneous Catalysts for Oxidation Reactions
-
J. Am. Chem. Soc. 2017, 139, 17994-18002, 10.1021/jacs.7b09343
Designing systems that merge the advantages of heterogeneous catalysis, enzymology, and molecular catalysis represents the next major goal for sustainable chemistry. Cross-linked enzyme crystals display most of these essential assets (well-designed mesoporous support, protein selectivity, and molecular recognition of substrates). Nevertheless, a lack of reaction diversity, particularly in the field of oxidation, remains a constraint for their increased use in the field. Here, thanks to the design of cross-linked artificial nonheme iron oxygenase crystals, we filled this gap by developing biobased heterogeneous catalysts capable of oxidizing carbon–carbon double bonds. First, reductive O2 activation induces selective oxidative cleavage, revealing the indestructible character of the solid catalyst (at least 30 000 turnover numbers without any loss of activity). Second, the use of 2-electron oxidants allows selective and high-efficiency hydroxychlorination with thousands of turnover numbers. This new technology by far outperforms catalysis using the inorganic complexes alone, or even the artificial enzymes in solution. The combination of easy catalyst synthesis, the improvement of “omic” technologies, and automation of protein crystallization makes this strategy a real opportunity for the future of (bio)catalysis.
Metal: FeLigand type: ---Host protein: NikAAnchoring strategy: SupramolecularOptimization: ChemicalNotes: Cross-Linked Enzyme Crystals (CLEC) as catalysts.
Metal: FeLigand type: ---Host protein: NikAAnchoring strategy: SupramolecularOptimization: ChemicalNotes: Cross-Linked Enzyme Crystals (CLEC) as catalysts.
-
The Protein Environment Drives Selectivity for Sulfide Oxidation by an Artificial Metalloenzyme
-
ChemBioChem 2009, 10, 545-552, 10.1002/cbic.200800595
Magic Mn–salen metallozyme: The design of an original, artificial, inorganic, complex‐protein adduct, has led to a better understanding of the synergistic effects of both partners. The exclusive formation of sulfoxides by the hybrid biocatalyst, as opposed to sulfone in the case of the free inorganic complex, highlights the modulating role of the inorganic‐complex‐binding site in the protein.
Metal: MnLigand type: SalenHost protein: Human serum albumin (HSA)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---