1 publication
-
A Designed Supramolecular Protein Assembly with In Vivo Enzymatic Activity
-
Science 2014, 346, 1525-1528, 10.1126/science.1259680
The generation of new enzymatic activities has mainly relied on repurposing the interiors of preexisting protein folds because of the challenge in designing functional, three-dimensional protein structures from first principles. Here we report an artificial metallo-β-lactamase, constructed via the self-assembly of a structurally and functionally unrelated, monomeric redox protein into a tetrameric assembly that possesses catalytic zinc sites in its interfaces. The designed metallo-β-lactamase is functional in the Escherichia coli periplasm and enables the bacteria to survive treatment with ampicillin. In vivo screening of libraries has yielded a variant that displays a catalytic proficiency [(kcat/Km)/kuncat] for ampicillin hydrolysis of 2.3 × 106 and features the emergence of a highly mobile loop near the active site, a key component of natural β-lactamases to enable substrate interactions.
Metal: ZnLigand type: Amino acidHost protein: Cytochrome cb562Anchoring strategy: DativeOptimization: GeneticNotes: ---