8 publications

8 publications

Abiological Catalysis by Artificial Haem Proteins Containing Noble Metals in Place of Iron

Hartwig, J.F.

Nature 2016, 534, 534-537, 10.1038/nature17968

Enzymes that contain metal ions—that is, metalloenzymes—possess the reactivity of a transition metal centre and the potential of molecular evolution to modulate the reactivity and substrate-selectivity of the system1. By exploiting substrate promiscuity and protein engineering, the scope of reactions catalysed by native metalloenzymes has been expanded recently to include abiological transformations2,3. However, this strategy is limited by the inherent reactivity of metal centres in native metalloenzymes. To overcome this limitation, artificial metalloproteins have been created by incorporating complete, noble-metal complexes within proteins lacking native metal sites1,4,5. The interactions of the substrate with the protein in these systems are, however, distinct from those with the native protein because the metal complex occupies the substrate binding site. At the intersection of these approaches lies a third strategy, in which the native metal of a metalloenzyme is replaced with an abiological metal with reactivity different from that of the metal in a native protein6,7,8. This strategy could create artificial enzymes for abiological catalysis within the natural substrate binding site of an enzyme that can be subjected to directed evolution. Here we report the formal replacement of iron in Fe-porphyrin IX (Fe-PIX) proteins with abiological, noble metals to create enzymes that catalyse reactions not catalysed by native Fe-enzymes or other metalloenzymes9,10. In particular, we prepared modified myoglobins containing an Ir(Me) site that catalyse the functionalization of C–H bonds to form C–C bonds by carbene insertion and add carbenes to both β-substituted vinylarenes and unactivated aliphatic α-olefins. We conducted directed evolution of the Ir(Me)-myoglobin and generated mutants that form either enantiomer of the products of C–H insertion and catalyse the enantio- and diastereoselective cyclopropanation of unactivated olefins. The presented method of preparing artificial haem proteins containing abiological metal porphyrins sets the stage for the generation of artificial enzymes from innumerable combinations of PIX-protein scaffolds and unnatural metal cofactors to catalyse a wide range of abiological transformations.


Metal: Ir
Ligand type: Methyl; Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Metal substitution
Optimization: Chemical & genetic
Reaction: C-H activation
Max TON: 7260
ee: 68
PDB: ---
Notes: ---

Metal: Ir
Ligand type: Methyl; Porphyrin
Host protein: Myoglobin (Mb)
Anchoring strategy: Metal substitution
Optimization: Chemical & genetic
Reaction: C-H activation
Max TON: 92
ee: 84
PDB: ---
Notes: ---

An asymmetric catalyst

Akabori, S.; Sakurai, S.

Nature 1956, 178, 323-324, 10.1038/178323b0

Asymmetric synthesis has hitherto succeeded only by using reagents or solvents having the asymmetric configuration.


Metal: Pd
Ligand type: Undefined
Host protein: Silk fibroin fibre
Anchoring strategy: Undefined
Optimization: ---
Reaction: Hydrogenation
Max TON: >22
ee: ---
PDB: ---
Notes: ---

Constructing Protein Polyhedra via Orthogonal Chemical Interactions

Tezcan, F.A.

Nature 2020, 578, 172-176, 10.1038/s41586-019-1928-2

Many proteins exist naturally as symmetrical homooligomers or homopolymers1. The emergent structural and functional properties of such protein assemblies have inspired extensive efforts in biomolecular design2,3,4,5. As synthesized by ribosomes, proteins are inherently asymmetric. Thus, they must acquire multiple surface patches that selectively associate to generate the different symmetry elements needed to form higher-order architectures1,6—a daunting task for protein design. Here we address this problem using an inorganic chemical approach, whereby multiple modes of protein–protein interactions and symmetry are simultaneously achieved by selective, ‘one-pot’ coordination of soft and hard metal ions. We show that a monomeric protein (protomer) appropriately modified with biologically inspired hydroxamate groups and zinc-binding motifs assembles through concurrent Fe3+ and Zn2+ coordination into discrete dodecameric and hexameric cages. Our cages closely resemble natural polyhedral protein architectures7,8 and are, to our knowledge, unique among designed systems9,10,11,12,13 in that they possess tightly packed shells devoid of large apertures. At the same time, they can assemble and disassemble in response to diverse stimuli, owing to their heterobimetallic construction on minimal interprotein-bonding footprints. With stoichiometries ranging from [2 Fe:9 Zn:6 protomers] to [8 Fe:21 Zn:12 protomers], these protein cages represent some of the compositionally most complex protein assemblies—or inorganic coordination complexes—obtained by design.


Metal: Fe; Zn
Ligand type: Hydroxaamate
Host protein: Cytochrome cb562
Anchoring strategy: Covalent
Optimization: Chemical & genetic
Reaction: ---
Max TON: ---
ee: ---
PDB: BMC2
Notes: ---

Design of Functional Metalloproteins

Review

Lu, Y.

Nature 2009, 460, 855-862, 10.1038/nature08304

Metalloproteins catalyse some of the most complex and important processes in nature, such as photosynthesis and water oxidation. An ultimate test of our knowledge of how metalloproteins work is to design new metalloproteins. Doing so not only can reveal hidden structural features that may be missing from studies of native metalloproteins and their variants, but also can result in new metalloenzymes for biotechnological and pharmaceutical applications. Although it is much more challenging to design metalloproteins than non-metalloproteins, much progress has been made in this area, particularly in functional design, owing to recent advances in areas such as computational and structural biology.


Notes: ---

Directed Evolution of Artificial Metalloenzymes for In Vivo Metathesis

Panke, S.; Ward, T.R.

Nature 2016, 537, 661-665, 10.1038/nature19114

The field of biocatalysis has advanced from harnessing natural enzymes to using directed evolution to obtain new biocatalysts with tailor-made functions1. Several tools have recently been developed to expand the natural enzymatic repertoire with abiotic reactions2,3. For example, artificial metalloenzymes, which combine the versatile reaction scope of transition metals with the beneficial catalytic features of enzymes, offer an attractive means to engineer new reactions. Three complementary strategies exist3: repurposing natural metalloenzymes for abiotic transformations2,4; in silico metalloenzyme (re-)design5,6,7; and incorporation of abiotic cofactors into proteins8,9,10,11. The third strategy offers the opportunity to design a wide variety of artificial metalloenzymes for non-natural reactions. However, many metal cofactors are inhibited by cellular components and therefore require purification of the scaffold protein12,13,14,15. This limits the throughput of genetic optimization schemes applied to artificial metalloenzymes and their applicability in vivo to expand natural metabolism. Here we report the compartmentalization and in vivo evolution of an artificial metalloenzyme for olefin metathesis, which represents an archetypal organometallic reaction16,17,18,19,20,21,22 without equivalent in nature. Building on previous work6 on an artificial metallohydrolase, we exploit the periplasm of Escherichia coli as a reaction compartment for the ‘metathase’ because it offers an auspicious environment for artificial metalloenzymes, mainly owing to low concentrations of inhibitors such as glutathione, which has recently been identified as a major inhibitor15. This strategy facilitated the assembly of a functional metathase in vivo and its directed evolution with substantially increased throughput compared to conventional approaches that rely on purified protein variants. The evolved metathase compares favourably with commercial catalysts, shows activity for different metathesis substrates and can be further evolved in different directions by adjusting the workflow. Our results represent the systematic implementation and evolution of an artificial metalloenzyme that catalyses an abiotic reaction in vivo, with potential applications in, for example, non-natural metabolism.


Metal: Ru
Ligand type: Carbene
Host protein: Streptavidin (Sav)
Anchoring strategy: Supramolecular
Optimization: Genetic
Reaction: Olefin metathesis
Max TON: 610
ee: ---
PDB: ---
Notes: Reaction in the periplasm

Metal Ion Dependent Binding of Sulphonamide to Carbonic Anhydrase

Coleman, J.E.

Nature 1967, 214, 193-194, 10.1038/214193a0

ACETAZOLAMIDE (2-acetylamino-1,3,4-thiadiazole-5-sulphonamide, ‘Diamox’) is the most potent known inhibitor of the zinc enzyme carbonic anhydrase. This communication reports the direct demonstration that binding of acetazolamide to human carbonic anhydrase requires the presence of a metal ion at the active site and that binding depends on the species of divalent metal ion present. Zinc (II) and cobalt (II) ions are the only ions which induce the formation of very stable acetazolamide carbonic anhydrase complexes and are also the ions which most effectively catalyse the hydration of carbon dioxide and the hydrolysis of p-nitrophenyl acetate. Metal-binding monodentate ions, CN−, HS−, OCN−, and N3−, known as effective carbonic anhydrase inhibitors, compete for the acetazolamide binding site of the zinc enzyme.


Metal: Co
Ligand type: Amino acid
Host protein: Human carbonic anhydrase
Anchoring strategy: Metal substitution
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: CO2 hydration

Metal: Co
Ligand type: Amino acid
Host protein: Human carbonic anhydrase
Anchoring strategy: Metal substitution
Optimization: ---
Max TON: ---
ee: ---
PDB: ---
Notes: Ester cleavage

Rational Design of a Structural and Functional Nitric Oxide Reductase

Lu, Y.

Nature 2009, 462, 1079-1082, 10.1038/nature08620

Protein design provides a rigorous test of our knowledge about proteins and allows the creation of novel enzymes for biotechnological applications. Whereas progress has been made in designing proteins that mimic native proteins structurally1,2,3, it is more difficult to design functional proteins4,5,6,7,8. In comparison to recent successes in designing non-metalloproteins4,6,7,9,10, it is even more challenging to rationally design metalloproteins that reproduce both the structure and function of native metalloenzymes5,8,11,12,13,14,15,16,17,18,19,20. This is because protein metal-binding sites are much more varied than non-metal-containing sites, in terms of different metal ion oxidation states, preferred geometry and metal ion ligand donor sets. Because of their variability, it has been difficult to predict metal-binding site properties in silico, as many of the parameters, such as force fields, are ill-defined. Therefore, the successful design of a structural and functional metalloprotein would greatly advance the field of protein design and our understanding of enzymes. Here we report a successful, rational design of a structural and functional model of a metalloprotein, nitric oxide reductase (NOR), by introducing three histidines and one glutamate, predicted as ligands in the active site of NOR, into the distal pocket of myoglobin. A crystal structure of the designed protein confirms that the minimized computer model contains a haem/non-haem FeB centre that is remarkably similar to that in the crystal structure. This designed protein also exhibits NO reduction activity, and so models both the structure and function of NOR, offering insight that the active site glutamate is required for both iron binding and activity. These results show that structural and functional metalloproteins can be rationally designed in silico.


Metal: Fe
Ligand type: Amino acid
Host protein: Myoglobin (Mb)
Anchoring strategy: Dative
Optimization: Genetic
Reaction: NO reduction
Max TON: ~5
ee: ---
PDB: 3K9Z
Notes: Design of a catalytically active non-haem iron-binding site (FeB) in sperm whale myoglobin.

Selection and Evolution of Enzymes from a Partially Randomized Non-Catalytic Scaffold

Seelig, B.; Szostak, J.W.

Nature 2007, 448, 828-831, 10.1038/nature06032

Enzymes are exceptional catalysts that facilitate a wide variety of reactions under mild conditions, achieving high rate-enhancements with excellent chemo-, regio- and stereoselectivities. There is considerable interest in developing new enzymes for the synthesis of chemicals and pharmaceuticals1,2,3 and as tools for molecular biology. Methods have been developed for modifying and improving existing enzymes through screening, selection and directed evolution4,5. However, the design and evolution of truly novel enzymes has relied on extensive knowledge of the mechanism of the reaction6,7,8,9,10. Here we show that genuinely new enzymatic activities can be created de novo without the need for prior mechanistic information by selection from a naive protein library of very high diversity, with product formation as the sole selection criterion. We used messenger RNA display, in which proteins are covalently linked to their encoding mRNA11, to select for functional proteins from an in vitro translated protein library of >1012independent sequences without the constraints imposed by any in vivo step. This technique has been used to evolve new peptides and proteins that can bind a specific ligand12,13,14,15,16,17,18, from both random-sequence libraries12,14,15,16 and libraries based on a known protein fold17,18. We now describe the isolation of novel RNA ligases from a library that is based on a zinc finger scaffold18,19, followed by in vitro directed evolution to further optimize these enzymes. The resulting ligases exhibit multiple turnover with rate enhancements of more than two-million-fold.


Metal: Zn
Ligand type: Amino acid
Anchoring strategy: Dative
Optimization: Genetic
Reaction: RNA ligation
Max TON: >7
ee: ---
PDB: ---
Notes: ---